Matemática, perguntado por lucassjkgg, 9 meses atrás


demonstre \: que \:  \frac{1 - cos \: x}{1 + cos \: x}  =  {tg}^{2}  \frac{x}{2}

Soluções para a tarefa

Respondido por CyberKirito
3

Do cosseno do arco duplo temos:

\mathsf{cos(2x)=2cos^2(x)-1}

fazendo

\mathsf{t=2x\to~x=\dfrac{t}{2}} temos:

\mathsf{cos(t)=2cos^2(\dfrac{t}{2})-1}

Daí

\mathsf{cos(x)=2cos^2(\dfrac{x}{2})-1}

Vamos usar essa identidade para fazer a demonstração pedida.

\mathsf{\dfrac{1-cos(x)}{1+cos(x)}}\\\mathsf{\dfrac{1-\left[2cos^2(\dfrac{x}{2})-1\right]}{1+2cos^2(\dfrac{x}{2})-1}}

\mathsf{\dfrac{1-2cos^2(\dfrac{x}{2})+1}{2cos^2(\dfrac{x}{2})}}\\\mathsf{\dfrac{2-2cos^2(\dfrac{x}{2})}{2cos^2(\dfrac{x}{2})}}

\mathsf{\dfrac{2(1-cos^2(\dfrac{x}{2}))}{2cos^2(\dfrac{x}{2})}}\\\mathsf{\dfrac{1-cos^2(\dfrac{x}{2})}{cos^2(\dfrac{x}{2})}}

\mathsf{\dfrac{sen^2(\dfrac{x}{2})}{cos^2(\dfrac{x}{2})}} = \large\boxed{\boxed{\boxed{\boxed{\mathsf{tg^2(\dfrac{x}{2})}}}}}


CyberKirito: De nada :)
Perguntas interessantes