Matemática, perguntado por teomathos, 1 ano atrás

Calcule f'(x), sendof(t)= \frac{ \sqrt{t}-1 }{ \sqrt{t}+1 } =0

Soluções para a tarefa

Respondido por Lukyo
1
f(t)=\dfrac{\sqrt{t}-1}{\sqrt{t}+1}

______________

Calculando a derivada:

f'(t)=\left(\dfrac{\sqrt{t}-1}{\sqrt{t}+1} \right )'\\\\\\ =\dfrac{\big(\sqrt{t}-1\big)'\cdot \big(\sqrt{t}+1\big)-\big(\sqrt{t}-1\big)\cdot \big(\sqrt{t}+1\big)'}{\big(\sqrt{t}+1\big)^2}\\\\\\ =\dfrac{\frac{1}{2\sqrt{t}}\cdot \big(\sqrt{t}+1\big)-\big(\sqrt{t}-1\big)\cdot \frac{1}{2\sqrt{t}}}{\big(\sqrt{t}+1\big)^2}\\\\\\ =\dfrac{\frac{1}{2\sqrt{t}}\cdot \left[\big(\sqrt{t}+1\big)-\big(\sqrt{t}-1\big) \right ]}{\big(\sqrt{t}+1\big)^2}


=\dfrac{\frac{1}{\diagup\!\!\!\! 2\sqrt{t}}\cdot \diagup\!\!\!\! 2}{\big(\sqrt{t}+1\big)^2}\\\\\\ \therefore~~\boxed{\begin{array}{c}f'(t)=\dfrac{1}{\sqrt{t}\cdot \big(\sqrt{t}+1\big)^2} \end{array}}


teomathos: Vlw mais uma vez!!!!
Perguntas interessantes