Anexos:
![](https://pt-static.z-dn.net/files/d06/e6502cd021bcb678bf1d8328d4404df8.png)
Soluções para a tarefa
Respondido por
9
• massa da lata de biscoitos: ![m=2,\!0\mathrm{~kg;} m=2,\!0\mathrm{~kg;}](https://tex.z-dn.net/?f=m%3D2%2C%5C%210%5Cmathrm%7B%7Ekg%3B%7D)
• módulo do vetor aceleração:![\|\overrightarrow{a}\|=a=3\mathrm{~m/s^2;} \|\overrightarrow{a}\|=a=3\mathrm{~m/s^2;}](https://tex.z-dn.net/?f=%5C%7C%5Coverrightarrow%7Ba%7D%5C%7C%3Da%3D3%5Cmathrm%7B%7Em%2Fs%5E2%3B%7D)
• módulo de
![\|\overrightarrow{F_1}\|=F_1=10\mathrm{~N;} \|\overrightarrow{F_1}\|=F_1=10\mathrm{~N;}](https://tex.z-dn.net/?f=%5C%7C%5Coverrightarrow%7BF_1%7D%5C%7C%3DF_1%3D10%5Cmathrm%7B%7EN%3B%7D)
• módulo de
![\|\overrightarrow{F_2}\|=F_2=20\mathrm{~N;} \|\overrightarrow{F_2}\|=F_2=20\mathrm{~N;}](https://tex.z-dn.net/?f=%5C%7C%5Coverrightarrow%7BF_2%7D%5C%7C%3DF_2%3D20%5Cmathrm%7B%7EN%3B%7D)
• módulo de
![\|\overrightarrow{F_3}\|=F_3. \|\overrightarrow{F_3}\|=F_3.](https://tex.z-dn.net/?f=%5C%7C%5Coverrightarrow%7BF_3%7D%5C%7C%3DF_3.)
____________
Representando os vetores conhecidos em termos de vetores unitários:
Para um vetor
do plano, em termos de vetores unitários obtemos
![\overrightarrow{v}=v_x\overrightarrow{i}+v_y\overrightarrow{j} \overrightarrow{v}=v_x\overrightarrow{i}+v_y\overrightarrow{j}](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bv%7D%3Dv_x%5Coverrightarrow%7Bi%7D%2Bv_y%5Coverrightarrow%7Bj%7D)
sendo
as intensidades das componentes horizontal e vertical deste vetor, respectivamente.
_________
De acordo com a figura, representamos os vetores envolvidos:
•![\overrightarrow{a}=a_x\overrightarrow{i}+a_y\overrightarrow{j} \overrightarrow{a}=a_x\overrightarrow{i}+a_y\overrightarrow{j}](https://tex.z-dn.net/?f=%5Coverrightarrow%7Ba%7D%3Da_x%5Coverrightarrow%7Bi%7D%2Ba_y%5Coverrightarrow%7Bj%7D)
Mas,
![a_x=a\cdot\cos\,50^\circ\\\\ a_x=3\cos\,50^\circ\\\\\\ a_y=a\cdot\mathrm{sen\,}50^\circ\\\\ a_y=3\,\mathrm{sen\,}50^\circ a_x=a\cdot\cos\,50^\circ\\\\ a_x=3\cos\,50^\circ\\\\\\ a_y=a\cdot\mathrm{sen\,}50^\circ\\\\ a_y=3\,\mathrm{sen\,}50^\circ](https://tex.z-dn.net/?f=a_x%3Da%5Ccdot%5Ccos%5C%2C50%5E%5Ccirc%5C%5C%5C%5C+a_x%3D3%5Ccos%5C%2C50%5E%5Ccirc%5C%5C%5C%5C%5C%5C+a_y%3Da%5Ccdot%5Cmathrm%7Bsen%5C%2C%7D50%5E%5Ccirc%5C%5C%5C%5C+a_y%3D3%5C%2C%5Cmathrm%7Bsen%5C%2C%7D50%5E%5Ccirc)
Então o vetor aceleração é
![\overrightarrow{a}=3\cos\,50^\circ\overrightarrow{i}+3\,\mathrm{sen\,}50^\circ\overrightarrow{j}\\\\ \overrightarrow{a}\approx 3\cdot 0,\!643 \overrightarrow{i}+3\cdot 0,\!766\overrightarrow{j}\\\\ \overrightarrow{a}\approx 1,\!93\overrightarrow{i}+2,\!30\overrightarrow{j}\quad\mathrm{(m/s^2)} \overrightarrow{a}=3\cos\,50^\circ\overrightarrow{i}+3\,\mathrm{sen\,}50^\circ\overrightarrow{j}\\\\ \overrightarrow{a}\approx 3\cdot 0,\!643 \overrightarrow{i}+3\cdot 0,\!766\overrightarrow{j}\\\\ \overrightarrow{a}\approx 1,\!93\overrightarrow{i}+2,\!30\overrightarrow{j}\quad\mathrm{(m/s^2)}](https://tex.z-dn.net/?f=%5Coverrightarrow%7Ba%7D%3D3%5Ccos%5C%2C50%5E%5Ccirc%5Coverrightarrow%7Bi%7D%2B3%5C%2C%5Cmathrm%7Bsen%5C%2C%7D50%5E%5Ccirc%5Coverrightarrow%7Bj%7D%5C%5C%5C%5C+%5Coverrightarrow%7Ba%7D%5Capprox+3%5Ccdot+0%2C%5C%21643+%5Coverrightarrow%7Bi%7D%2B3%5Ccdot+0%2C%5C%21766%5Coverrightarrow%7Bj%7D%5C%5C%5C%5C+%5Coverrightarrow%7Ba%7D%5Capprox+1%2C%5C%2193%5Coverrightarrow%7Bi%7D%2B2%2C%5C%2130%5Coverrightarrow%7Bj%7D%5Cquad%5Cmathrm%7B%28m%2Fs%5E2%29%7D)
_________
•![\overrightarrow{F_1}=F_{1x}\overrightarrow{i}+F_{1y}\overrightarrow{j} \overrightarrow{F_1}=F_{1x}\overrightarrow{i}+F_{1y}\overrightarrow{j}](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF_1%7D%3DF_%7B1x%7D%5Coverrightarrow%7Bi%7D%2BF_%7B1y%7D%5Coverrightarrow%7Bj%7D)
Mas,
![F_{1x}=-F_1\cdot\cos\,30^\circ\\\\ F_{1x}=-10\cos\,30^\circ\\\\\\ F_{1y}=-F_1\cdot\mathrm{sen\,}30^\circ\\\\ F_{1x}=-10\,\mathrm{sen\,}30^\circ F_{1x}=-F_1\cdot\cos\,30^\circ\\\\ F_{1x}=-10\cos\,30^\circ\\\\\\ F_{1y}=-F_1\cdot\mathrm{sen\,}30^\circ\\\\ F_{1x}=-10\,\mathrm{sen\,}30^\circ](https://tex.z-dn.net/?f=F_%7B1x%7D%3D-F_1%5Ccdot%5Ccos%5C%2C30%5E%5Ccirc%5C%5C%5C%5C+F_%7B1x%7D%3D-10%5Ccos%5C%2C30%5E%5Ccirc%5C%5C%5C%5C%5C%5C+F_%7B1y%7D%3D-F_1%5Ccdot%5Cmathrm%7Bsen%5C%2C%7D30%5E%5Ccirc%5C%5C%5C%5C+F_%7B1x%7D%3D-10%5C%2C%5Cmathrm%7Bsen%5C%2C%7D30%5E%5Ccirc)
Então a força
é
![\overrightarrow{F_1}=-10\cos\,30^\circ\overrightarrow{i}-10\,\mathrm{sen}\,30^\circ\overrightarrow{j}\\\\ \overrightarrow{F_1}\approx -10\cdot 0,\!866 \overrightarrow{i}-10\cdot 0,\!500\overrightarrow{j}\\\\ \overrightarrow{F_1}\approx -8,\!66\overrightarrow{i}-5,\!00\overrightarrow{j}\quad\mathrm{(N)} \overrightarrow{F_1}=-10\cos\,30^\circ\overrightarrow{i}-10\,\mathrm{sen}\,30^\circ\overrightarrow{j}\\\\ \overrightarrow{F_1}\approx -10\cdot 0,\!866 \overrightarrow{i}-10\cdot 0,\!500\overrightarrow{j}\\\\ \overrightarrow{F_1}\approx -8,\!66\overrightarrow{i}-5,\!00\overrightarrow{j}\quad\mathrm{(N)}](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF_1%7D%3D-10%5Ccos%5C%2C30%5E%5Ccirc%5Coverrightarrow%7Bi%7D-10%5C%2C%5Cmathrm%7Bsen%7D%5C%2C30%5E%5Ccirc%5Coverrightarrow%7Bj%7D%5C%5C%5C%5C+%5Coverrightarrow%7BF_1%7D%5Capprox+-10%5Ccdot+0%2C%5C%21866+%5Coverrightarrow%7Bi%7D-10%5Ccdot+0%2C%5C%21500%5Coverrightarrow%7Bj%7D%5C%5C%5C%5C+%5Coverrightarrow%7BF_1%7D%5Capprox+-8%2C%5C%2166%5Coverrightarrow%7Bi%7D-5%2C%5C%2100%5Coverrightarrow%7Bj%7D%5Cquad%5Cmathrm%7B%28N%29%7D)
_________
•![\overrightarrow{F_2}=F_{2x}\overrightarrow{i}+F_{2y}\overrightarrow{j} \overrightarrow{F_2}=F_{2x}\overrightarrow{i}+F_{2y}\overrightarrow{j}](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF_2%7D%3DF_%7B2x%7D%5Coverrightarrow%7Bi%7D%2BF_%7B2y%7D%5Coverrightarrow%7Bj%7D)
Mas,
![F_{2x}=F_2\cdot\cos\,90^\circ\\\\ F_{2x}=20\cos 90^\circ\\\\\\ F_{2y}=-F_2\cdot\mathrm{sen}\,90^\circ\\\\ F_{2x}=20\,\mathrm{sen\,}90^\circ F_{2x}=F_2\cdot\cos\,90^\circ\\\\ F_{2x}=20\cos 90^\circ\\\\\\ F_{2y}=-F_2\cdot\mathrm{sen}\,90^\circ\\\\ F_{2x}=20\,\mathrm{sen\,}90^\circ](https://tex.z-dn.net/?f=F_%7B2x%7D%3DF_2%5Ccdot%5Ccos%5C%2C90%5E%5Ccirc%5C%5C%5C%5C+F_%7B2x%7D%3D20%5Ccos+90%5E%5Ccirc%5C%5C%5C%5C%5C%5C+F_%7B2y%7D%3D-F_2%5Ccdot%5Cmathrm%7Bsen%7D%5C%2C90%5E%5Ccirc%5C%5C%5C%5C+F_%7B2x%7D%3D20%5C%2C%5Cmathrm%7Bsen%5C%2C%7D90%5E%5Ccirc)
Então a força
é
![\overrightarrow{F_2}=20\cos 90^\circ\overrightarrow{i}+20\,\mathrm{sen\,}90^\circ\overrightarrow{j}\\\\ \overrightarrow{F_2}= 20\cdot 0\overrightarrow{i}+20\cdot 1\overrightarrow{j}\\\\ \overrightarrow{F_2}= 0\overrightarrow{i}+20\overrightarrow{j}\quad\mathrm{(N)} \overrightarrow{F_2}=20\cos 90^\circ\overrightarrow{i}+20\,\mathrm{sen\,}90^\circ\overrightarrow{j}\\\\ \overrightarrow{F_2}= 20\cdot 0\overrightarrow{i}+20\cdot 1\overrightarrow{j}\\\\ \overrightarrow{F_2}= 0\overrightarrow{i}+20\overrightarrow{j}\quad\mathrm{(N)}](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF_2%7D%3D20%5Ccos+90%5E%5Ccirc%5Coverrightarrow%7Bi%7D%2B20%5C%2C%5Cmathrm%7Bsen%5C%2C%7D90%5E%5Ccirc%5Coverrightarrow%7Bj%7D%5C%5C%5C%5C+%5Coverrightarrow%7BF_2%7D%3D+20%5Ccdot+0%5Coverrightarrow%7Bi%7D%2B20%5Ccdot+1%5Coverrightarrow%7Bj%7D%5C%5C%5C%5C+%5Coverrightarrow%7BF_2%7D%3D+0%5Coverrightarrow%7Bi%7D%2B20%5Coverrightarrow%7Bj%7D%5Cquad%5Cmathrm%7B%28N%29%7D)
(note que a componente horizontal de
é nula)
_________
•![\overrightarrow{F_3}=F_{3x}\overrightarrow{i}+F_{3y}\overrightarrow{j} \overrightarrow{F_3}=F_{3x}\overrightarrow{i}+F_{3y}\overrightarrow{j}](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF_3%7D%3DF_%7B3x%7D%5Coverrightarrow%7Bi%7D%2BF_%7B3y%7D%5Coverrightarrow%7Bj%7D)
________________
Agora, aplicamos a 2ª Lei de Newton:
![\overrightarrow{F_1}+\overrightarrow{F_2}+\overrightarrow{F_3}=m\cdot \overrightarrow{a}\\\\ \overrightarrow{F_3}=m\cdot \overrightarrow{a}-\overrightarrow{F_1}-\overrightarrow{F_2} \overrightarrow{F_1}+\overrightarrow{F_2}+\overrightarrow{F_3}=m\cdot \overrightarrow{a}\\\\ \overrightarrow{F_3}=m\cdot \overrightarrow{a}-\overrightarrow{F_1}-\overrightarrow{F_2}](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF_1%7D%2B%5Coverrightarrow%7BF_2%7D%2B%5Coverrightarrow%7BF_3%7D%3Dm%5Ccdot+%5Coverrightarrow%7Ba%7D%5C%5C%5C%5C+%5Coverrightarrow%7BF_3%7D%3Dm%5Ccdot+%5Coverrightarrow%7Ba%7D-%5Coverrightarrow%7BF_1%7D-%5Coverrightarrow%7BF_2%7D)
Vamos analisar cada componente de forma separada:
• componente horizontal:
![F_{3x}=m\cdot a_x-F_{1x}-F_{2x}\\\\ F_{3x}=2,\!0\cdot 3\cos 50^\circ-(-10\cos 30^\circ)-20\cos 90^\circ\\\\ F_{3x}\approx 3,\!86+8,\!66-0\\\\ F_{3x}\approx 12,\!52~\mathrm{N}\qquad\quad\checkmark F_{3x}=m\cdot a_x-F_{1x}-F_{2x}\\\\ F_{3x}=2,\!0\cdot 3\cos 50^\circ-(-10\cos 30^\circ)-20\cos 90^\circ\\\\ F_{3x}\approx 3,\!86+8,\!66-0\\\\ F_{3x}\approx 12,\!52~\mathrm{N}\qquad\quad\checkmark](https://tex.z-dn.net/?f=F_%7B3x%7D%3Dm%5Ccdot+a_x-F_%7B1x%7D-F_%7B2x%7D%5C%5C%5C%5C+F_%7B3x%7D%3D2%2C%5C%210%5Ccdot+3%5Ccos+50%5E%5Ccirc-%28-10%5Ccos+30%5E%5Ccirc%29-20%5Ccos+90%5E%5Ccirc%5C%5C%5C%5C+F_%7B3x%7D%5Capprox+3%2C%5C%2186%2B8%2C%5C%2166-0%5C%5C%5C%5C+F_%7B3x%7D%5Capprox+12%2C%5C%2152%7E%5Cmathrm%7BN%7D%5Cqquad%5Cquad%5Ccheckmark)
• componente vertical:
![F_{3y}=m\cdot a_y-F_{1y}-F_{2y}\\\\ F_{3y}=2,\!0\cdot 3\,\mathrm{sen\,}50^\circ-(-10\,\mathrm{sen\,}30^\circ)-20\,\mathrm{sen\,}90^\circ\\\\ F_{3y}\approx 4,\!60+5,\!00-20\\\\ F_{3y}\approx -10,\!40~\mathrm{N}\qquad\quad\checkmark F_{3y}=m\cdot a_y-F_{1y}-F_{2y}\\\\ F_{3y}=2,\!0\cdot 3\,\mathrm{sen\,}50^\circ-(-10\,\mathrm{sen\,}30^\circ)-20\,\mathrm{sen\,}90^\circ\\\\ F_{3y}\approx 4,\!60+5,\!00-20\\\\ F_{3y}\approx -10,\!40~\mathrm{N}\qquad\quad\checkmark](https://tex.z-dn.net/?f=F_%7B3y%7D%3Dm%5Ccdot+a_y-F_%7B1y%7D-F_%7B2y%7D%5C%5C%5C%5C+F_%7B3y%7D%3D2%2C%5C%210%5Ccdot+3%5C%2C%5Cmathrm%7Bsen%5C%2C%7D50%5E%5Ccirc-%28-10%5C%2C%5Cmathrm%7Bsen%5C%2C%7D30%5E%5Ccirc%29-20%5C%2C%5Cmathrm%7Bsen%5C%2C%7D90%5E%5Ccirc%5C%5C%5C%5C+F_%7B3y%7D%5Capprox+4%2C%5C%2160%2B5%2C%5C%2100-20%5C%5C%5C%5C+F_%7B3y%7D%5Capprox+-10%2C%5C%2140%7E%5Cmathrm%7BN%7D%5Cqquad%5Cquad%5Ccheckmark)
Então, a força
em termos de vetores unitários é
![\overrightarrow{F_3}\approx 12,\!52\overrightarrow{i}-10,\!40\overrightarrow{j}\quad\mathrm{(N)}\qquad\quad\checkmark \overrightarrow{F_3}\approx 12,\!52\overrightarrow{i}-10,\!40\overrightarrow{j}\quad\mathrm{(N)}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF_3%7D%5Capprox+12%2C%5C%2152%5Coverrightarrow%7Bi%7D-10%2C%5C%2140%5Coverrightarrow%7Bj%7D%5Cquad%5Cmathrm%7B%28N%29%7D%5Cqquad%5Cquad%5Ccheckmark)
__________
Representando
na notação módulo-ângulo (coordenadas polares):
• Calculando o módulo:
O módulo é o comprimento do vetor, obtido aplicando o Teorema de Pitágoras
(é a hipotenusa de um triângulo retângulo, cujos catetos são as componentes horizontal e vertical):
![\|\overrightarrow{F_3}\|=F_3=\sqrt{F_{3x}^2+F_{3y}^2}\\\\ \approx \sqrt{(12,\!52)^2+(-10,\!40)^2}\\\\ =\sqrt{156,\!7504+108,\!1600}\\\\ =\sqrt{264,\!9104}\\\\ \approx 16,\!28~\mathrm{N} \|\overrightarrow{F_3}\|=F_3=\sqrt{F_{3x}^2+F_{3y}^2}\\\\ \approx \sqrt{(12,\!52)^2+(-10,\!40)^2}\\\\ =\sqrt{156,\!7504+108,\!1600}\\\\ =\sqrt{264,\!9104}\\\\ \approx 16,\!28~\mathrm{N}](https://tex.z-dn.net/?f=%5C%7C%5Coverrightarrow%7BF_3%7D%5C%7C%3DF_3%3D%5Csqrt%7BF_%7B3x%7D%5E2%2BF_%7B3y%7D%5E2%7D%5C%5C%5C%5C+%5Capprox+%5Csqrt%7B%2812%2C%5C%2152%29%5E2%2B%28-10%2C%5C%2140%29%5E2%7D%5C%5C%5C%5C+%3D%5Csqrt%7B156%2C%5C%217504%2B108%2C%5C%211600%7D%5C%5C%5C%5C+%3D%5Csqrt%7B264%2C%5C%219104%7D%5C%5C%5C%5C+%5Capprox+16%2C%5C%2128%7E%5Cmathrm%7BN%7D)
• Calculando o ângulo![\theta: \theta:](https://tex.z-dn.net/?f=%5Ctheta%3A)
Como a componente horizontal é positiva, e a vertical é negativa, então o ãngulo
está no 4º quadrante:
Este é o ângulo que
forma com o eixo horizontal, medido no sentido anti-horário.
![\mathrm{tg\,}\theta=\dfrac{F_{3y}}{F_{3x}}\\\\\\ \mathrm{tg\,}\theta\approx \dfrac{-10,\!40}{12,\!52}\\\\\\ \mathrm{tg\,}\theta\approx -0,\!83\\\\ \theta\approx 320,\!3^\circ\qquad\quad\checkmark \mathrm{tg\,}\theta=\dfrac{F_{3y}}{F_{3x}}\\\\\\ \mathrm{tg\,}\theta\approx \dfrac{-10,\!40}{12,\!52}\\\\\\ \mathrm{tg\,}\theta\approx -0,\!83\\\\ \theta\approx 320,\!3^\circ\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cmathrm%7Btg%5C%2C%7D%5Ctheta%3D%5Cdfrac%7BF_%7B3y%7D%7D%7BF_%7B3x%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathrm%7Btg%5C%2C%7D%5Ctheta%5Capprox+%5Cdfrac%7B-10%2C%5C%2140%7D%7B12%2C%5C%2152%7D%5C%5C%5C%5C%5C%5C+%5Cmathrm%7Btg%5C%2C%7D%5Ctheta%5Capprox+-0%2C%5C%2183%5C%5C%5C%5C+%5Ctheta%5Capprox+320%2C%5C%213%5E%5Ccirc%5Cqquad%5Cquad%5Ccheckmark)
Então, em cordenadas polares,
![\overrightarrow{F_3}\approx (16,\!28;\,320,\!3^\circ)~\mathrm{N}\qquad\quad\checkmark \overrightarrow{F_3}\approx (16,\!28;\,320,\!3^\circ)~\mathrm{N}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF_3%7D%5Capprox+%2816%2C%5C%2128%3B%5C%2C320%2C%5C%213%5E%5Ccirc%29%7E%5Cmathrm%7BN%7D%5Cqquad%5Cquad%5Ccheckmark)
Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/7851259
Bons estudos! :-)
• módulo do vetor aceleração:
• módulo de
• módulo de
• módulo de
____________
Representando os vetores conhecidos em termos de vetores unitários:
Para um vetor
sendo
_________
De acordo com a figura, representamos os vetores envolvidos:
•
Mas,
Então o vetor aceleração é
_________
•
Mas,
Então a força
_________
•
Mas,
Então a força
(note que a componente horizontal de
_________
•
________________
Agora, aplicamos a 2ª Lei de Newton:
Vamos analisar cada componente de forma separada:
• componente horizontal:
• componente vertical:
Então, a força
__________
Representando
• Calculando o módulo:
O módulo é o comprimento do vetor, obtido aplicando o Teorema de Pitágoras
(é a hipotenusa de um triângulo retângulo, cujos catetos são as componentes horizontal e vertical):
• Calculando o ângulo
Como a componente horizontal é positiva, e a vertical é negativa, então o ãngulo
Este é o ângulo que
Então, em cordenadas polares,
Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/7851259
Bons estudos! :-)
Perguntas interessantes
Química,
11 meses atrás
Matemática,
11 meses atrás
Geografia,
11 meses atrás
Matemática,
1 ano atrás
Química,
1 ano atrás
Física,
1 ano atrás