Matemática, perguntado por viniciushenrique406, 1 ano atrás

\begin{array}{l}\mathsf{Obter~tg~x~~sabendo~que~~sin^2x-5\cdot sin~x\cdot cos~x~+cos^2x=3}\end{array}

\mathsf{gab:~~tg~x=-2~~ou~~tg~x=\dfrac{-1}{2}}

*Trigonometria, relações fundamentais.

Soluções para a tarefa

Respondido por DanJR
1
Olá Vinícius, boa noite!
 
Fiz assim:

\\ \mathsf{\sin^2 x - 5 \cdot \sin x \cdot \cos x + \cos^2 x = 3} \\\\ \mathsf{\underbrace{\mathsf{\sin^2 x + \cos^2 x}}_{1} - 5 \cdot \sin x \cdot \cos x = 3} \\\\ \mathsf{- 5 \cdot \sin x \cdot \cos x = 3 - 1} \\\\ \mathsf{\sin x \cdot \cos x = - \frac{2}{5}} \\\\ \mathsf{\sin x = - \frac{2}{5 \cdot \cos x}}
 
 Queremos encontrar \mathsf{\tan x}, isto é,

\\ \mathsf{\tan x = \frac{\sin x}{\cos x}} \\\\\\ \mathsf{\tan x = - \frac{2}{5 \cdot \cos x} \div \cos x} \\\\\\ \mathsf{\tan x = - \frac{2}{5 \cdot \cos x} \times \frac{1}{\cos x}} \\\\\\ \mathsf{\tan x = - \frac{2}{5 \cdot \cos^2 x} \qquad \qquad (i)}
 
 Recorrendo à relação \mathsf{\sin^2 x + \cos^2 x = 1}, temos que:

\\ \mathsf{\sin^2 x + \cos^2 x = 1} \\\\ \mathsf{\left ( - \frac{2}{5 \cdot \cos x} \right )^2 + \cos^2 x = 1} \\\\\\ \mathsf{\frac{4}{25 \cdot \cos^2 x} + \cos^2 x = 1} \\\\\\ \mathsf{25 \cdot \cos^4 x - 25 \cdot \cos^2 x + 4 = 0} 

\\ \mathsf{25 \cdot \cos^4 x - 20 \cdot \cos^2 x - 5 \cdot \cos^2 x + 4 = 0} \\\\ \mathsf{5 \cdot \cos^2 x \cdot \left ( 5 \cdot \cos^2 x - 4 \right ) - 1 \cdot \left ( 5 \cdot \cos^2 x - 4 \right ) = 0} \\\\ \mathsf{\left ( 5 \cdot \cos^2 x - 4 \right ) \cdot \left [ 5 \cdot \cos^2 x - 1 \right ] = 0}
 
 Com efeito,

\\ \mathsf{\left ( 5 \cdot \cos^2 x - 4 \right ) \cdot \left [ 5 \cdot \cos^2 x - 1 \right ] = 0} \\\\ \Downarrow \\\\ \begin{cases} \mathsf{5 \cdot \cos^2 x - 4 = 0 \Rightarrow \boxed{\mathsf{\cos^2 x = \frac{4}{5}}}} \\ \mathsf{5 \cdot \cos^2 x - 1 = 0 \Rightarrow \boxed{\mathsf{\cos^2 x = \frac{1}{5}}}} \end{cases}
 
 Por fim, substituímos... em (i). Segue,

\\ \bullet \qquad \mathsf{Quando \ \boxed{\mathsf{\cos^2 x = \frac{4}{5}}}:} \\\\\\ \mathsf{\tan x = - \frac{2}{5} \cdot \frac{1}{\cos^2 x}} \\\\\\ \mathsf{\tan x = - \frac{2}{5} \cdot \frac{1}{\frac{4}{5}}} \\\\\\ \mathsf{\tan x = - \frac{2}{5} \cdot \frac{5}{4}} \\\\\\ \boxed{\boxed{\mathsf{\tan x = - \frac{1}{2}}}}
 
\\ \bullet \bullet \qquad \mathsf{Quando \ \boxed{\mathsf{\cos^2 x = \frac{1}{5}}}:} \\\\\\ \mathsf{\tan x = - \frac{2}{5} \cdot \frac{1}{\cos^2 x}} \\\\\\ \mathsf{\tan x = - \frac{2}{5} \cdot \frac{1}{\frac{1}{5}}} \\\\\\ \mathsf{\tan x = - \frac{2}{5} \cdot \frac{5}{1}} \\\\\\ \boxed{\boxed{\mathsf{\tan x = - 2}}}
 
 Boa questão!!


viniciushenrique406: Uau, agora posso dormir tranquilo kkkkk
viniciushenrique406: Muito obrigado Dan! :D
DanJR: Rss
DanJR: Não há de quê!!
Perguntas interessantes