Matemática, perguntado por Sylphid, 1 ano atrás

A= \left[\begin{array}{ccc}2&0\\-1&3\\\end{array}\right] B=  \left[\begin{array}{ccc}0&1\\5&-1\\\end{array}\right] C=  \left[\begin{array}{ccc}4&5\\2&1\\\end{array}\right]

a matriz X tal que 2x+b^t=A - C vale?

Soluções para a tarefa

Respondido por Niiya
1
X=\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\\\\2X=2\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\\\\2X=\left[\begin{array}{cc}2a&2b\\2c&2d\end{array}\right]
_______________________

B=\left[\begin{array}{cc}0&1\\5&-1\end{array}\right]\\\\B^{T}=\left[\begin{array}{cc}0&5\\1&-1\end{array}\right]

A - C=\left[\begin{array}{cc}2&0\\-1&3\end{array}\right]-\left[\begin{array}{cc}4&5\\2&1\end{array}\right]=\left[\begin{array}{cc}(2-4)&(0-5)\\(-1-2)&(3-1)\end{array}\right]

A-C=\left[\begin{array}{cc}-2&-5\\-3&2\end{array}\right]
_______________________

2X+B^{T}=A-C\\\\ \left[\begin{array}{cc}2a&2b\\2c&2d\end{array}\right]+\left[\begin{array}{cc}0&5\\1&-1\end{array}\right]=\left[\begin{array}{cc}-2&-5\\-3&2\end{array}\right]\\\\\left[\begin{array}{cc}2a+0&2b+5\\2c+1&2d-1\end{array}\right]=\left[\begin{array}{cc}-2&-5\\-3&2\end{array}\right]\\\\\\2a+0=-2\\2a=-2\\a=-2/2\\a=-1

2b+5=-5\\2b=-5-5\\2b=-10\\b=-10/2\\b=-5

2c+1=-3\\2c=-3-1\\2c=-4\\c=-4/2\\c=-2\\\\2d-1=2\\2d=2+1\\2d=3\\d=3/2
_______________________

X=  \left[\begin{array}{cc}a&b\\c&d\end{array}\right] \\\\X=  \left[\begin{array}{cc}-1&-5\\-2&\frac{3}{2}\end{array}\right]

Sylphid: vlw .-.
Perguntas interessantes