Matemática, perguntado por myduvidas, 1 ano atrás

 4^{x+1} -33*2^{x}+8=0

Soluções para a tarefa

Respondido por korvo
3
Olá,

use as propriedades da exponenciação: 

4^{x+1}-33\cdot2^x+8=0\\
4^x\cdot4^1-33\cdot2^x+8=0\\
(2^2)^x\cdot4-33\cdot2^x+8=0\\
4\cdot(2^x)^2-33\cdot2^x+8=0\\\\
2^x=y\\\\
4y^2-33y+8=0\\\\
\Delta=(-33)^2-4\cdot4\cdot8\\
\Delta=1.089-128\\
\Delta=961\\\\
y= \dfrac{-(-33)\pm \sqrt{961} }{2\cdot4}= \dfrac{33\pm31}{8}\begin{cases}y_1= \dfrac{2}{8}= \dfrac{1}{4}\\\\
y_2= \dfrac{64}{8}=8   \end{cases}\\\\\\
2^x=y_1~~\Rightarrow~~2^x= \dfrac{1}{4}~~\Rightarrow~~\not2^x=\not2^{-2}~~\Rightarrow~~x_1=-2 

2^x=y_2~~\Rightarrow2^x=8~~\Rightarrow~~\not2^x=\not2^3~~\Rightarrow~~ x_2=3

Portanto:

\huge\boxed{\boxed{\text{S}=\{-2,3\}}}

myduvidas: Valeu! :D
Respondido por Usuário anônimo
4
Boa noite!


Solução!


4^{x+1}-33.2^{x}+8=0\\\\\\
4^{x}.4^{1}-33.2^{x}+8=0\\\\\
2^{2x}.2^{2}-33. 2^{x}+8=0 \\\\\
(2^{x})^{2}.4-33.2^{x}+8=0


Fazendo!\\\\\
2^{x}=y\\\\\\\
(y)^{2}.4-33.y+8=0\\\\\\
4y^{2}-33y+8=0


y= \dfrac{33\pm \sqrt{(-33)^{2}-4.4.8 } }{2.4}\\\\\\\\
y= \dfrac{33\pm \sqrt{1089-128 } }{8}\\\\\\\\ 
y= \dfrac{33\pm \sqrt{961} }{8}\\\\\\\\
y= \dfrac{33\pm 31 }{8}\\\\\\\\\\\\\
y_{1}= \dfrac{33+31}{8}= \dfrac{64}{8}=8\\\\\\\\\   
y_{2}= \dfrac{33-31}{8}= \dfrac{2}{8}= \dfrac{1}{4}


Retomando!\\\\\\
 2^{x}=y_{1} \\\\\\
2^{x}=8 \\\\\\
2^{x}=2^{3}  \\\\\\
\boxed{x=3}\\\\\\\\
2^{x}=y_{2}\\\\\\\
2^{x}= \dfrac{1}{4}\\\\\\\
2^{x}= \dfrac{1}{2^{2} }\\\\\\\
2^{x}= 2^{-2}


Retomando!\\\\\\ 2^{x}=y_{1} \\\\\\ 2^{x}=8 \\\\\\ 2^{x}=2^{3} \\\\\\ \boxed{x=3}\\\\\\\\ 2^{x}=y_{2}\\\\\\\ 2^{x}= \dfrac{1}{4}\\\\\\\ 2^{x}= \dfrac{1}{2^{2} }\\\\\\\ 2^{x}= 2^{-2} \\\\\\\

\boxed{x=-2}


\boxed{Resposta~~S=\{-2,3\}}

Boa noite!
Bons estudos!



myduvidas: Valeu, cara!
Usuário anônimo: Dê nada!
Perguntas interessantes