Matemática, perguntado por thamirodrig, 1 ano atrás

0,2  ^{x+1} =  \sqrt{125}

Soluções para a tarefa

Respondido por korvo
2
(0,2)^{x+1}= \sqrt{125} \\\\
\left( \dfrac{2}{10}\right)^{x+1}= \sqrt{5^3}\\\\
\left( \dfrac{2\div2}{10\div2}\right)^{x+1}= \sqrt[2]{5^3}\\\\
\left( \dfrac{1}{5}\right)^{x+1}=5^{ \tfrac{3}{2} }\\\\
\left( \dfrac{1}{5^1}\right)^{x+1}=5^{ \tfrac{3}{2} }\\\\
(5^{-1})^{x+1}=5^{ \tfrac{3}{2} }\\
\not5^{-x-1}=\not5^{ \tfrac{3}{2}}\\\\
-x-1= \dfrac{3}{2}\\\\
2\cdot(-x-1)=3\\
-2x-2=3\\
-2x=3+2\\
-2x=5\\\\
x=- \dfrac{5}{2}\\\\\\
S=\left\{- \dfrac{5}{2}\right\}
Perguntas interessantes