Matemática, perguntado por luizconta2006, 6 meses atrás

Teorema de Tales
Matemática ​

Anexos:

Soluções para a tarefa

Respondido por jpsugai
2

Resposta:

x = \frac{3\sqrt{14} }{7 }

Explicação passo a passo:

Aplicando o teorema de tales:

3x/(x + 6) = (x + 3)/(x + 3 + x)

-> (x + 6)*(x + 3) = 3x*(2x + 3)

-> x^2 + 9x + 18 = 6x^2 + 9x

-> 7x^2 = 18 -> x^2 = 18/7

->x =  \sqrt{\frac{18}{7} } = \frac{\sqrt{18} }{\sqrt{7} }*\frac{\sqrt{7} }{\sqrt{7} } = \frac{\sqrt{18}*\sqrt{7}  }{7}

->x = \frac{\sqrt{126} }{7 } = \frac{3*\sqrt{14} }{7 }

Respondido por kaynanff6
0

Resposta:

x =

Explicação passo a passo:

Aplicando o teorema de tales:

3x/(x + 6) = (x + 3)/(x + 3 + x)

-> (x + 6)*(x + 3) = 3x*(2x + 3)

-> x^2 + 9x + 18 = 6x^2 + 9x

-> 7x^2 = 18 -> x^2 = 18/7

->x =   = * =

->x =  = 3x/(x + 6) = (x + 3)/(x + 3 + x)

-> (x + 6)*(x + 3) = 3x*(2x + 3)

-> x^2 + 9x + 18 = 6x^2 + 9x

-> 7x^2 = 18 -> x^2 = 18/7

->x =   = * =

->x =  = 3x/(x + 6) = (x + 3)/(x + 3 + x)

-> (x + 6)*(x + 3) = 3x*(2x + 3)

-> x^2 + 9x + 18 = 6x^2 + 9x

-> 7x^2 = 18 -> x^2 = 18/7

->x =   = * =

->x =  = 3x/(x + 6) = (x + 3)/(x + 3 + x)

-> (x + 6)*(x + 3) = 3x*(2x + 3)

-> x^2 + 9x + 18 = 6x^2 + 9x

-> 7x^2 = 18 -> x^2 = 18/7

->x =   = * =

->x =  = 3x/(x + 6) = (x + 3)/(x + 3 + x)

-> (x + 6)*(x + 3) = 3x*(2x + 3)

-> x^2 + 9x + 18 = 6x^2 + 9x

-> 7x^2 = 18 -> x^2 = 18/7

->x =   = * =

->x =  =

Perguntas interessantes