Tenho que comprar lápis e canetas. Se comprar 7 lápis e 3 canetas, gastarei R$ 16,50. Se comprar 5 lápis e 4 canetas, gastarei R$ 15,50. Qual o preço de cada lápis e cada caneta?
yasminjreige:
gnt é pra hj me ajuda
Soluções para a tarefa
Respondido por
14
• Preço de 1 lápis: x
• Preço de 1 caneta: y
________________
• Se eu comprar 7 lápis e 3 canetas, vou gastar R$ 16,50:
7x + 3y = 16,50
• Se eu comprar 5 lápis e 4 canetas, vou gastar R$ 15,50:
5x + 4y = 15,50
________________
• O problema consiste em resolver o sistema formado pelas duas equações:
![\left\{\!\begin{array}{lc} 7x+3y=16,50&~~~~\mathbf{(i)}\\\\ 5x+4y=15,50&~~~~\mathbf{(ii)} \end{array}\right. \left\{\!\begin{array}{lc} 7x+3y=16,50&~~~~\mathbf{(i)}\\\\ 5x+4y=15,50&~~~~\mathbf{(ii)} \end{array}\right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5C%21%5Cbegin%7Barray%7D%7Blc%7D+7x%2B3y%3D16%2C50%26amp%3B%7E%7E%7E%7E%5Cmathbf%7B%28i%29%7D%5C%5C%5C%5C+5x%2B4y%3D15%2C50%26amp%3B%7E%7E%7E%7E%5Cmathbf%7B%28ii%29%7D+%5Cend%7Barray%7D%5Cright.)
• Isolando y na equação (i), temos
![3y=16,50-7x\\\\ y=\dfrac{16,50-7x}{3} 3y=16,50-7x\\\\ y=\dfrac{16,50-7x}{3}](https://tex.z-dn.net/?f=3y%3D16%2C50-7x%5C%5C%5C%5C+y%3D%5Cdfrac%7B16%2C50-7x%7D%7B3%7D)
• Substituindo na equação (ii),
![5x+4\cdot \left(\dfrac{16,50-7x}{3}\right)=15,50\\\\\\ 5x+\dfrac{4\cdot (16,50-7x)}{3}=15,50\\\\\\ \dfrac{15x+4\cdot (16,50-7x)}{3}=15,50\\\\\\ 15x+4\cdot (16,50-7x)=3\cdot 15,50\\\\ 15x+4\cdot (16,50-7x)=46,50\\\\ 15x+66,00-28x=46,50\\\\ 15x-28x=46,50-66,00\\\\ -13x=-19,50\\\\ x=\dfrac{-19,50}{-13}\\\\\\ \boxed{\begin{array}{c}x=1,50 \end{array}} 5x+4\cdot \left(\dfrac{16,50-7x}{3}\right)=15,50\\\\\\ 5x+\dfrac{4\cdot (16,50-7x)}{3}=15,50\\\\\\ \dfrac{15x+4\cdot (16,50-7x)}{3}=15,50\\\\\\ 15x+4\cdot (16,50-7x)=3\cdot 15,50\\\\ 15x+4\cdot (16,50-7x)=46,50\\\\ 15x+66,00-28x=46,50\\\\ 15x-28x=46,50-66,00\\\\ -13x=-19,50\\\\ x=\dfrac{-19,50}{-13}\\\\\\ \boxed{\begin{array}{c}x=1,50 \end{array}}](https://tex.z-dn.net/?f=5x%2B4%5Ccdot+%5Cleft%28%5Cdfrac%7B16%2C50-7x%7D%7B3%7D%5Cright%29%3D15%2C50%5C%5C%5C%5C%5C%5C+5x%2B%5Cdfrac%7B4%5Ccdot+%2816%2C50-7x%29%7D%7B3%7D%3D15%2C50%5C%5C%5C%5C%5C%5C+%5Cdfrac%7B15x%2B4%5Ccdot+%2816%2C50-7x%29%7D%7B3%7D%3D15%2C50%5C%5C%5C%5C%5C%5C+15x%2B4%5Ccdot+%2816%2C50-7x%29%3D3%5Ccdot+15%2C50%5C%5C%5C%5C+15x%2B4%5Ccdot+%2816%2C50-7x%29%3D46%2C50%5C%5C%5C%5C+15x%2B66%2C00-28x%3D46%2C50%5C%5C%5C%5C+15x-28x%3D46%2C50-66%2C00%5C%5C%5C%5C+-13x%3D-19%2C50%5C%5C%5C%5C+x%3D%5Cdfrac%7B-19%2C50%7D%7B-13%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7Dx%3D1%2C50+%5Cend%7Barray%7D%7D)
Portanto,
![y=\dfrac{16,50-7\cdot 1,50}{3}\\\\\\ y=\dfrac{16,50-10,50}{3}\\\\\\ y=\dfrac{6,00}{3}\\\\\\ \boxed{\begin{array}{c}y=2,00 \end{array}} y=\dfrac{16,50-7\cdot 1,50}{3}\\\\\\ y=\dfrac{16,50-10,50}{3}\\\\\\ y=\dfrac{6,00}{3}\\\\\\ \boxed{\begin{array}{c}y=2,00 \end{array}}](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B16%2C50-7%5Ccdot+1%2C50%7D%7B3%7D%5C%5C%5C%5C%5C%5C+y%3D%5Cdfrac%7B16%2C50-10%2C50%7D%7B3%7D%5C%5C%5C%5C%5C%5C+y%3D%5Cdfrac%7B6%2C00%7D%7B3%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7Dy%3D2%2C00+%5Cend%7Barray%7D%7D)
______________
• O preço de cada lápis é R$ 1,50;
• O preço de cada caneta é R$ 2,00.
Bons estudos! :-)
• Preço de 1 caneta: y
________________
• Se eu comprar 7 lápis e 3 canetas, vou gastar R$ 16,50:
7x + 3y = 16,50
• Se eu comprar 5 lápis e 4 canetas, vou gastar R$ 15,50:
5x + 4y = 15,50
________________
• O problema consiste em resolver o sistema formado pelas duas equações:
• Isolando y na equação (i), temos
• Substituindo na equação (ii),
Portanto,
______________
• O preço de cada lápis é R$ 1,50;
• O preço de cada caneta é R$ 2,00.
Bons estudos! :-)
Perguntas interessantes