Matemática, perguntado por edmilsonsouza, 1 ano atrás

temos uma progressão aritimética de 20 termos onde o primeiro termo e igual a 5.A soma de todos os termos dessa progressão aritimética é 480 determine o 10 (decimo) termo da P.A?

Soluções para a tarefa

Respondido por Helvio
2
Calcular a razão:
r = ( an - a1 ) / ( n - 1 )
r = ( 43 - 5 ) / ( 20 - 1 )
r = 38 / 19
r = 2

===================
an = ak + ( n - k ) * r
5 = a10 + ( 1 - 10 ) * 2
5 = a10 + (-9 ) * 2
5 = a10 - 18
5 + 18 = a10 
a10 = 23

===================



Respondido por AlissonLaLo
0

\Large\boxed{\boxed{\boxed{{Ola\´\ Edmilson}}}}}

A₁ = 5

N = 20

S₂₀ = 480

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Sn = (a₁ + an) . n / 2

480 = (5 + an ) . 20/2

480 = 100 + 20an/2

2(480)  = 100 + 20an

960 = 100+ 20an

960 - 100 = 20an

860 = 20an

860/20 = an

43 = an

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

A questão quer saber o 10º termo e para isso temos que encontrar primeiro a razão dessa progressão.

an = a1 + (n-1) .r

43 = 5 + (20-1) .r

43 = 5 + 20r - r

43 = 5 + 19r

43 - 5 = 19r

38 = 19r

38/19 = r

2 = r

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Agora vamos calcular o 10º termo.

a₁₀ = a₁ + 9r

a₁₀ = 5 + 9.2

a₁₀ = 5 + 18

a₁₀ = 23

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Portanto o 10º termo é igual a 23.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!

Perguntas interessantes