tem-se um prisma reto de base hexagonal (hexágono regular), cuja altura é H=raiz de 3 e cujo raio do circulo que circunscreve a base e R=2. A área total desse Prisma é ?
Soluções para a tarefa
Respondido por
7
Você quer dizer volume? Vprismahexagoanl==>
Respondido por
2
h = \/3
r = 2
hexágono --> r = lado
lado = 2 --> aresta = 2
Como no hexágono há 6 triângulos equiláteros de lado 2...
a área de cada triângulo é L²\/3/4 = 2²\/3/4 = 4\/3/4 = \/3
Área do hexágono = 6\/3 (área da base)
Área da face lateral:
... verificar o apótema da pirâmide...
h = \/3
r = 2
ap² = 2²+(\/3)²
ap² = 4+3
ap² = 7
ap = \/7
Área da face = área do triângulo da face =
a.\/7/2 = 2.\/7/2 = \/7
6.\/7 = 6\/7 (área lateral)
Área total = 6\/7 + 6\/3
Área total = 6(\/7+\/3)
r = 2
hexágono --> r = lado
lado = 2 --> aresta = 2
Como no hexágono há 6 triângulos equiláteros de lado 2...
a área de cada triângulo é L²\/3/4 = 2²\/3/4 = 4\/3/4 = \/3
Área do hexágono = 6\/3 (área da base)
Área da face lateral:
... verificar o apótema da pirâmide...
h = \/3
r = 2
ap² = 2²+(\/3)²
ap² = 4+3
ap² = 7
ap = \/7
Área da face = área do triângulo da face =
a.\/7/2 = 2.\/7/2 = \/7
6.\/7 = 6\/7 (área lateral)
Área total = 6\/7 + 6\/3
Área total = 6(\/7+\/3)
Perguntas interessantes
Matemática,
10 meses atrás
História,
10 meses atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás