Matemática, perguntado por Pfcah, 1 ano atrás

Tangente 30° ((COM RESOLUÇÃO))

Soluções para a tarefa

Respondido por adjemir
3
Vamos lá.

Veja, Camila, que tan(30º) = sen(30º)/cos(30º)

Como o arco de 30º é um arco notável, então já sabemos que:

sen(30º) = 1/2
e
cos(30º) = √(3)/2.

Assim, teremos para tan(30º)

tan(30º) = sen(30º)/cos(30º) ---- substituindo-se os valores de sen(30º) e de cos(30º), teremos:

tan(30º) = (1/2) / (√(3)/2) ---- veja: divisão de frações. Regra: conserva-se a primeira fração como está e multiplica-se pelo inverso da segunda. Logo:

tan(30º) = (1/2)*(2/√(3) ---- efetuando o produto indicado, teremos;
tan(30º) = 1*2/2*√(3) --- ou apenas:
tan(30º) = 2/2√(3) --- dividindo-se "2" do numerador com "2" do denominador, iremos ficar apenas com:

tan(30º) = 1/√(3) ---- para racionalizar, vamos multiplicar numerador e denominador por √(3).Assim:

tan(30º) = 1*√(3)/√(3)*√(3) ----- desenvolvendo, teremos;
tan(30º) = √(3)/√(3*3)
tan(30º) = √(3)/√(9) ------- como √(9) = 3, teremos:
tan(30º) = √(3) / 3 <--- Pronto. Esta é a resposta. Este é o valor de tan(30º).

É isso aí.
Deu pra entenderbem?

OK?
Adjemir.

adjemir: Disponha, Camila, e bastante sucesso pra você. Um abraço.
Perguntas interessantes