(T²-3)² = 25 (Equação Biquadrada, achar o conjunto solução)
Soluções para a tarefa
Respondido por
0
(T² - 3)² = 25
T^4 - 6T² + 9 = 25
T^4 - 6T² + 9 - 25 = 0
T^4 - 6T² - 16 = 0
Chamaremos T² de X, então a equação ficará:
x² - 6x - 16 = 0
Δ = b² - 4ac
Δ = (-6)² - 4(1)(-16)
Δ = 36 + 64
Δ = 100
x = (-b±√Δ) / (2a)
x = (-(-6)±√100) / 2(1)
x = (6±10) / 2
x¹ = (6+10)/2 = 16/2 = 8
x² = (6-10)/2 = -4/2 = -2
Agora substitui os valores:
T² = X
T² = 8
T = √8
T = 2√2
T² = -2
T = √-2 (o que não existe quando se trata de números reais)
Então o conjunto solução será S = {2√2}
T^4 - 6T² + 9 = 25
T^4 - 6T² + 9 - 25 = 0
T^4 - 6T² - 16 = 0
Chamaremos T² de X, então a equação ficará:
x² - 6x - 16 = 0
Δ = b² - 4ac
Δ = (-6)² - 4(1)(-16)
Δ = 36 + 64
Δ = 100
x = (-b±√Δ) / (2a)
x = (-(-6)±√100) / 2(1)
x = (6±10) / 2
x¹ = (6+10)/2 = 16/2 = 8
x² = (6-10)/2 = -4/2 = -2
Agora substitui os valores:
T² = X
T² = 8
T = √8
T = 2√2
T² = -2
T = √-2 (o que não existe quando se trata de números reais)
Então o conjunto solução será S = {2√2}
meduardacardo:
Mas tem que fazer raiz de 8, se nao tem ela exata .. Teria que fatorar nao ?
Respondido por
1
Bem, sabendo que (T²-3)² = T³ -6T² +9
temos:
T^4 -6T² +9 -25=0
T^4 -6T² -16=0
Vamos chamar T²=y
Substituindo T² por y na equação T^4 -6T² -16=0
y² -6y -16=0
Achando o Delta , temos:
Δ= b² -4.ac
Δ=36 +64
Δ=100
Agora, encontremos os valores para y.
-b +/-√Δ
----------- (I)
2a
(II)
-(-6) +/- 10 y1=8
---------------=
2 (1) y2=-2
Se T²=y , verificando a existencia temos:
T²=8
T=+/-√8
e
T²=y2
T²=-2
T=+/-√-2 (não existe)
Logo, S={√8 }
temos:
T^4 -6T² +9 -25=0
T^4 -6T² -16=0
Vamos chamar T²=y
Substituindo T² por y na equação T^4 -6T² -16=0
y² -6y -16=0
Achando o Delta , temos:
Δ= b² -4.ac
Δ=36 +64
Δ=100
Agora, encontremos os valores para y.
-b +/-√Δ
----------- (I)
2a
(II)
-(-6) +/- 10 y1=8
---------------=
2 (1) y2=-2
Se T²=y , verificando a existencia temos:
T²=8
T=+/-√8
e
T²=y2
T²=-2
T=+/-√-2 (não existe)
Logo, S={√8 }
Perguntas interessantes
Matemática,
10 meses atrás
Sociologia,
10 meses atrás
Artes,
10 meses atrás
Matemática,
1 ano atrás
Inglês,
1 ano atrás
Geografia,
1 ano atrás