Matemática, perguntado por jordanalimeira, 1 ano atrás

Somente uma das equações abaixo tem as raízes 2 e 3. Qual é? *
a) 2x² - 5x + 6 = 0
b) x² - 5x – 6 = 0
c) x² + 5x + 6 = 0
d) – x² + 5x – 6 = 0

Soluções para a tarefa

Respondido por vampire
8

a)~x= \frac{-b\pm \sqrt{b^2-4.a.c}}{2.a} \\  \\ x= \frac{5\pm \sqrt{(-5)^2-4.2.6}}{2.2} \\  \\ x= \frac{5\pm \sqrt{25-24}}{4} \\  \\ x= \frac{5\pm \sqrt{1}}{4} \\  \\ x= \frac{5\pm1}{4}

x'= \frac{5+1}{4}= \frac{6}{4}:2= \frac{3}{2}

x''= \frac{5-1}{4}= \frac{4}{4}=1

b)~x= \frac{-b\pm \sqrt{b^2-4.a.c}}{2.a} \\  \\ x= \frac{5\pm \sqrt{(-5)^2-4.1.(-6)}}{2.1} \\  \\ x= \frac{5\pm \sqrt{25+24}}{2} \\  \\ x= \frac{5\pm \sqrt{49}}{2} \\  \\ x= \frac{5\pm7}{2}

x'= \frac{5+7}{2}= \frac{12}{2}=6 \\  \\ x''= \frac{5-7}{2}= \frac{-2}{2}=-1

c)~x= \frac{-b\pm \sqrt{b^2-4.a.c}}{2.a} \\  \\ x= \frac{-5\pm \sqrt{5^2-4.1.6}}{2.1} \\  \\ x= \frac{-5\pm \sqrt{25-24}}{2} \\ \\ x= \frac{-5\pm \sqrt{1}}{2} \\  \\ x= \frac{-5\pm1}{2}

x'= \frac{-5+1}{2}= \frac{-4}{2}=-2 \\  \\ x''= \frac{-5-1}{2}= \frac{-6}{2}=-3

d)~x= \frac{-b\pm \sqrt{b^2-4.a.c}}{2.a} \\  \\ x= \frac{-5\pm \sqrt{5^2-4.(-1).(-6)}}{2.(-1)} \\  \\ x= \frac{-5\pm \sqrt{25-24}}{-2} \\  \\ x= \frac{-5\pm \sqrt{1}}{-2} \\  \\ x= \frac{-5\pm1}{-2}

x'= \frac{-5+1}{2}= \frac{-4}{-2}=2 \\  \\ x''= \frac{-5-1}{-2}= \frac{-6}{-2}=3


Alternativa D.


Perguntas interessantes