Matemática, perguntado por Daniloalvesramos12, 10 meses atrás

Soma
dos ângulos internos de um decágono

Soluções para a tarefa

Respondido por bpftransportes
0

Resposta:

em que "si" é a soma dos ângulos internos e "n" é o número de lados do polígono. si = 1.440º <--- Esta é a resposta. Esta é a soma dos ângulos internos de um decágono.

Respondido por Math739
0

A soma dos ângulos internos de um polígono é dada pela expressão:

\Large\displaystyle\text{$\begin{gathered} \sf S_i = (n - 2) \cdot180 {}^{ \circ} \end{gathered}$}

Onde:

\Large\displaystyle\text{$\begin{gathered}  \begin{cases}  \sf S_i = soma \,dos\, \hat{a}ngulos \, internos=? \\  \sf n = n\acute{u}mero \,de\, lados  = 10\end{cases}\end{gathered}$}

Calculando a soma dos ângulos internos de um decágono pela fórmula temos que:

\Large\displaystyle\text{$\begin{gathered}  \sf S_i = (n - 2) \cdot180 {}^{ \circ} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf S_i = (10 -2) \cdot180 {}^{ \circ}  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf S_i = 8 \cdot180 {}^{ \circ}  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf S_i = 1440 {}^{ \circ}  \end{gathered}$}

Portanto, a soma dos ângulos internos de um decágono é:

\Large\displaystyle\text{$\begin{gathered}  \boxed{ \boxed{\bf  1440  {}^{ \circ}  }} \end{gathered}$}

Perguntas interessantes