socorrrrrooooooooooooooooo
Soluções para a tarefa
A área (A) do retângulo é calculada como o comprimento de sua base (b), vezes sua altura (h). Logo:
A = b×h
Substituindo os valores apresentados A = 24m², b = x+2 e h = x;
24 = (x+2)*(x)
Utilizando a propriedade distributiva para efetuar a multiplicação;
24 = x² + 2x
Mudando de lado os valores podemos observar que se trata de uma equação do 2º grau, podemos resolver com a fórmula de Bhaskara:
x² + 2x - 24 = 0
Bhaskara tem a seguinte forma para encontrar o valor de x:
x = (-b ± √(b²- 4*a*c))/2*a
E achamos os coeficientes a, b e c, comparando a equação x² + 2x - 24 = 0 com a seguinte definição: ax² + bx + c = 0;
Logo, podemos concluir que, nesse caso:
a = 1
b = 2
c = -24
Substituindo na equação de Bhaskara, temos:
x = (-2 ± √(2²- 4*1*(-24)))/2*1
x = (-2 ± √(4 + 96))/2
x = (-2 ± √100)/2
x = (-2 ± 10)/2
Como é uma equação quadrática, possuímos dois possíveis valores para x, sendo assim:
x' = (-2 + 10)/2 e x" = (-2 - 10)/2
x' = 8/2 x" = -12/2
x' = 4 x" = -6
Como x nesse caso representa comprimento, não podemos admitir o valor negativo de x", pois todo comprimento é positivo. Logo:
x = 4
Espero ter ajudado, qualquer dúvida é só perguntar.
- Figura = x | x + 2
- Área = 24 m²
Vamos ver o número 4 (4 m)
4 + 2 = 6
4 * 6 = 24
Opa, achamos!
O x será 4 m.
Espero ter ajudado!! -zCM