Sobre Geometria espacial - Um Cilindro reto mede 15 cm de raio e 30 cm de altura. calcule! a)A área da base (duas bases) b) A área lateral c) A área total do cilindro
Soluções para a tarefa
a)A área da base (duas bases)
Bom, se é um cilindro então sua base é um circulo e como sabemos a área de um circulo é dada pela seguinte fórmula:
Área = r².pi
r = 15
pi = pi --------> Pois o exercício não nos deu um valor aproximado para o mesmo.
Área = 15².pi.2 -------> 2 porque o exercício nos pediu a área das duas bases.
Área = 225.2.pi
Área = 450pi cm²
b) A área lateral
Aqui o que teremos de fazer é planificar as laterais do cilindro, para isso podemos utilizar a seguinte fórmula:
AL = h.2.pi.r
Tu pode estar se perguntando de onde eu tirei esse 2.pi.r e esse h ai. Calma, pensa comigo se planificarmos a lateral desse cilindro o que teremos será um retângulo, e para se calcular a área de um retângulo utilizamos a seguinte formula
Comprimento.Largura
No caso o comprimento vai ser dado por 2.pi.r, pois se tu pensar bem o comprimento do retângulo vai ser o comprimento do circulo, pois esse retângulo ta meio que abraçado com a circunferência tu concorda?
E essa largura vai ser a altura do cilindro.
Então teremos:
al = 15.pi.2.30
al = 30.30.pi
al = 900pi cm²
c) A área total do cilindro
A área total vai ser dada pela soma da área total das 2 bases com a área lateral, observe:
AT = r².pi.2 + 2.pi.r.h
AT = 15².pi.2 + 2.pi.15.30
AT = 225.2.pi + 30.30pi
AT = 450pi + 900pi
AT = 1.350pi cm²
Resposta:
Explicação passo-a-passo:
.
. Cilindro reto, em que: r (raio) = 15 cm
. h (altura) = 30 cm
.
. a) Área da base (Ab) = π . r² = π . (15 cm)² = 225π cm²
. Duas bases = 2 . 225π cm² = 450π cm²
.
. b) Área lateral (Al) = 2.π.r.h
. = 2 . π . 15 cm . 30 cm
. = 900π cm²
.
. c) Área total (At) = Al + 2.Ab
. = 900π cm² + 450π cm²
. = 1.350π cm²
.
(Espero ter colaborado)