Sobre fatorial, me ajudem a resolver essas expressões? Na verdade, sei as respostas de ambas e tenho os seus cálculos, mas não consigo entender o início da expressão, como se "arma" a mesma. Ficarei muitíssimo grata se alguém puder me ajudar pois tenho uma prova muito importante em breve. (O "início" qual me refiro está com a letra "D" como identificação, mas, além da foto, deixo as expressões aqui caso seja de melhor visualização).
a) 101! + 102!/100!
b) 15! + 14!/14! + 13!
( não está na foto) c) (n + 2)! . (n - 2)!/ (n + 1)! . (n - 1)!
Anexos:
Soluções para a tarefa
Respondido por
1
a) 101.100! + 102.101.100! / 100!
100! (101 + 102.101) / 100!
101 (1 + 102)
101 . 103
(100 + 1) . (100 + 3)
10000 + 300 + 100 + 3
10403 ← ←
☆★☆
b) 15.14.13! + 14.13! / 14.13! + 13!
13! (15.14 + 14) / 13! (14 + 1)
14 (15 + 1) / 15
(15 - 1)(15 + 1) / 15
15^2 - 1^2 / 15
225 - 1 / 15
224/15 ← ←
☆★☆
c) (n+2)(n+1)n(n-1)! / (n+1)n(n-1)! . (n-1)!
(n+2)(n+1)n(n-1)! / (n-1)! [(n+1)n + 1]
(n+2)(n+1)n / (n+1)n
n + 2 ← ←
100! (101 + 102.101) / 100!
101 (1 + 102)
101 . 103
(100 + 1) . (100 + 3)
10000 + 300 + 100 + 3
10403 ← ←
☆★☆
b) 15.14.13! + 14.13! / 14.13! + 13!
13! (15.14 + 14) / 13! (14 + 1)
14 (15 + 1) / 15
(15 - 1)(15 + 1) / 15
15^2 - 1^2 / 15
225 - 1 / 15
224/15 ← ←
☆★☆
c) (n+2)(n+1)n(n-1)! / (n+1)n(n-1)! . (n-1)!
(n+2)(n+1)n(n-1)! / (n-1)! [(n+1)n + 1]
(n+2)(n+1)n / (n+1)n
n + 2 ← ←
Usuário anônimo:
disponha...bons estudos!
Perguntas interessantes
Filosofia,
10 meses atrás
Português,
10 meses atrás
História,
10 meses atrás
Matemática,
1 ano atrás
Química,
1 ano atrás