Matemática, perguntado por guihsbo, 10 meses atrás

Sobre a Fórmula de Bhaskara? É bem fácil dominar e manejar a fórmula de Bhaskara, porém tenho uma dúvida, eu tenho que dominar a sua outra vertente que é o completar quadrados? Pois eu entendi a teoria, mas na prática, é muito mais viável eu utilizar a fórmula.

Soluções para a tarefa

Respondido por jowjowtodinho962
1

Explicação passo-a-passo:

Resolver uma equação do segundo grau é encontrar os valores de x (ou da incógnita proposta) que fazem com que essa equação seja igual a zero.

O método resolutivo de Bhaskara apenas exige que o valor numérico de cada coeficiente seja substituído na fórmula de Bhaskara. Após isso, basta realizar as operações matemáticas indicadas pela fórmula para obter as raízes da equação. Contudo, esse método costuma ser dividido em três etapas para facilitar a compreensão por parte dos alunos.

Etapa 1: Calcular discriminante

Discriminante é a expressão presente dentro da raiz na fórmula de Bhaskara. É comumente representado pela letra grega Δ (Delta) e recebe esse nome pelo fato de discriminar os resultados de uma equação da seguinte maneira:

Δ < 0, então a equação não possui resultados reais;

Δ = 0, então a equação possui apenas um resultado real ou possui dois resultados iguais (essas duas afirmações são equivalentes);

Δ > 0, então a equação possui dois resultados distintos reais.

Portanto, para calcular as raízes de uma equação do segundo grau, primeiramente calcule o valor numérico de Δ.

Etapa 2: Substitua discriminante e coeficientes na fórmula de Bhaskara

Geralmente a fórmula de Bhaskara é ensinada apenas da seguinte maneira:

Nessa etapa, basta substituir os valores de Δ e dos coeficientes da equação do segundo grau na fórmula acima.

Etapa 3: Calcule as raízes da equação

Para essa última etapa, note na fórmula de Bhaskara que existe um sinal “±”. Esse sinal indica que devem ser realizados dois cálculos. O primeiro para o caso em que o número que o segue seja positivo e o segundo para o caso em que o número que o segue seja negativo.

É comum nomear cada um desses resultados como x' e x'' ou x1 e x2.


guihsbo: Entendi, mas isso é a formula de Bhaskara, eu domino ela, o que eu quis falar foi sobre o Completar Quadrados, se ele é viável ou não de ser usado
jowjowtodinho962: É apenas uma alternativa, não é obrigatório saber
guihsbo: Ahhhh, agora entendi, poxa obrigado mesmo, eu estava perdendo muito tempo com isso atoa, ficou feliz de terem saciado minha dúvida
Perguntas interessantes