sistemas lineares 3x3
me ajudem
Soluções para a tarefa
j)
x + y + z = 7 x = 7 - y - z x = 7 - y - (4/3) x = 7 - y - (4/3)
y - 2z = -6 ⇔ y = -6 + 2z ⇔ y = -6 + 2 × (4/3) ⇔ y = -6 + 8/3 ⇔
9z = 12 3z = 4 z = 4/3 z = 4/3
x = 7 - y - (4/3) x = 7 - y - 4/3 x = 7 - y - 4/3
⇔ 3y/3 = -18/3 + 8/3 ⇔ 3y = -18 + 8 ⇔ 3y = -10 ⇔
z = 4/3 z = 4/3 z = 4/3
x = 7 - (-10/3) - 4/3 x = 7 + 10/3 - 4/3 3x/3 = 21/3 + 10/3 - 4/3
⇔ y = -10/3 ⇔ y = -10/3 ⇔ y = -10/3 ⇔
z = 4/3 z = 4/3 z = 4/3
3x = 21 + 10 - 4 3x = 27 x = 9
⇔ y = -10/3 ⇔ y = -10/3 ⇔ y = -10/3
z = 4/3 z = 4/3 z = 4/3
k)
2x + 3y - 2z = -7 2x = -7 - 3y + 2z 2x = -7 - 3y + 2 × 5
y + 4z = 21 ⇔ y = 21 - 4z ⇔ y = 21 - 4 × 5 ⇔
2z = 10 z = 5 z = 5
2x = -7 - 3y + 10 2x = -7 - 3 × 1 + 10 2x = -7 - 3 + 10
⇔ y = 21 - 20 ⇔ y = 1 ⇔ y = 1 ⇔
z = 5 z = 5 z = 5
2x = 0 x = 0
⇔ y = 1 ⇔ y = 1
z = 5 z = 5
l)
3x - y + 2z = 1 3x = 1 + y - 2z 3x = 1 + y - 2 × 1
2y - z = 13 ⇔ 2y = 13 + z ⇔ 2y = 13 + 1 ⇔
4z = 4 z = 1 z = 1
3x = 1 + y - 2 3x = 1 + 7 - 2 3x = 6 x = 2
⇔ 2y = 14 ⇔ y = 7 ⇔ y = 7 ⇔ y = 7
z = 1 z = 1 z = 1 z = 1
m)
x + 3y - z = -15 x = -15 - 3y + z x = -15 - 3y + 1
y + 5z = 1 ⇔ y = 1 - 5z ⇔ y = 1 - 5 × 1 ⇔
7z = 7 z = 1 z = 1
x = -15 - 3y + 1 x = -15 - 3 × (-4) + 1 x = -15 + 12 + 1
⇔ y = 1 - 5 ⇔ y = -4 ⇔ y = -4 ⇔
z = 1 z = 1 z = 1
x = -2
⇔ y = -4
z = 1