Matemática, perguntado por EinsteinBrainly, 7 meses atrás

Simplifique os radicais e reduza os termos. ( não consegui digitar tudo)

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
3

Resposta:

\sqrt{50}+ 4\sqrt{18}-6\sqrt{2} =11\sqrt{2}\\\\2\sqrt{20}+ 4\sqrt{45}+\sqrt{125}=21\sqrt{5}\\\\\\5\sqrt{3}+ \sqrt{12}-5\sqrt{48}=-13\sqrt{3}\\\\\\-2\sqrt{10}- 5\sqrt{90}+6\sqrt{10}-8\sqrt{40}=-27\sqrt{10}\\\\\\\sqrt[3]{2}  +\sqrt{2} +3\sqrt{2} +2\sqrt[3]{2} -\sqrt{8} =3\sqrt[3]{2}+2\sqrt{2}

Respondido por Leticia1618
5

Explicação passo-a-passo:

A

 \sqrt{50}  + 4 \sqrt{18}  - 6 \sqrt{2}

\sqrt{5 {}^{2}  \times 2 }  + 4 \sqrt{3 {}^{2} \times 2 }  - 6 \sqrt{2}

 \sqrt{5 {}^{2} }  \sqrt{2}  + 4 \sqrt{3 {}^{2} }  \sqrt{2}  - 6 \sqrt{2}

5 \sqrt{2}  + 4 \times 3 \sqrt{2}  - 6 \sqrt{2}

5 \sqrt{2}  + 12 \sqrt{2}  - 6 \sqrt{2}

(5 + 12 - 6) \sqrt{2}

(17 - 6) \sqrt{2}

11 \sqrt{2}

B

2 \sqrt{20}  - 4 \sqrt{45}  +  \sqrt{125}

2 \sqrt{2 {}^{2}  \times 5}  - 4 \sqrt{3 {}^{2} \times 5 }  +   \sqrt{5 {}^{3} }

2 \sqrt{2 {}^{2} }  \sqrt{5}  - 4 \sqrt{3 {}^{2} }  \sqrt{5}  +  \sqrt{5 {}^{2 + 1} }

2 \times 2 \sqrt{5}   -  4 \times 3 \sqrt{5}  +  \sqrt{5 {}^{2} \times 5 {}^{1}  }

4 \sqrt{5}  - 12 \sqrt{5}  +  \sqrt{5 {}^{2 }  \times 5}

4 \sqrt{5}  - 12 \sqrt{5}  +  \sqrt{5 {}^{2} }  \sqrt{5}

4 \sqrt{5}  - 12 \sqrt{5}  + 5 \sqrt{5}

(4 - 12 + 5) \sqrt{5}

( - 8 + 5) \sqrt{5}

 - 3 \sqrt{5}

C

5 \sqrt{3}  +  \sqrt{12}  - 5 \sqrt{48}

5 \sqrt{3}  +  \sqrt{2 {}^{2} \times 3 }  - 5 \sqrt{4 {}^{2} \times 3 }

5 \sqrt{3}  +  \sqrt{2 {}^{2} }  \sqrt{3}  - 5 \sqrt{4 {}^{2} }  \sqrt{3}

5 \sqrt{3}  + 2 \sqrt{3} +  5 \times 4 \sqrt{3}

5 \sqrt{3}  + 2 \sqrt{3}  - 20 \sqrt{3}

(5 + 2 - 20) \sqrt{3}

(7 - 20) \sqrt{3}

 - 13 \sqrt{3}

D

 - 2 \sqrt{10}  - 5 \sqrt{90}  + 6 \sqrt{10}  - 8 \sqrt{40}

 - 2 \sqrt{10}  - 5 \sqrt{3 {}^{2}  \times 10}  + 6 \sqrt{10}  - 8 \sqrt{2 {}^{2}  \times 10}

 - 2 \sqrt{10}  - 5 \sqrt{3 {}^{2} }  \sqrt{10}  + 6 \sqrt{10}  - 8 \sqrt{2 {}^{2} }  \sqrt{10}

 - 2 \sqrt{10}  - 5 \times 3 \sqrt{10}  + 6 \sqrt{10}  - 8 \times 2 \sqrt{10}

 - 2 \sqrt{10}  - 15 \sqrt{10}  + 6 \sqrt{10}  - 16 \sqrt{10}

( - 2 - 15 + 6 - 16) \sqrt{10}

( - 17 + 6 - 16) \sqrt{10}

( - 11 - 16) \sqrt{10}

 - 27 \sqrt{10}

E

 \sqrt[3]{2}  +  \sqrt{2}  + 3 \sqrt{2}  + 2 \sqrt[3]{2}  -  \sqrt{8}

 \sqrt[3]{2}  +  \sqrt{2}  + 3 \sqrt{2}  + 2 \sqrt[3]{2}  -  \sqrt{2 {}^{3} }

 \sqrt[3]{2}  +  \sqrt{2}  + 3 \sqrt{2}  + 2 \sqrt[3]{2}   -  \sqrt{2 {}^{2 + 1} }

 \sqrt[3]{2}  +  \sqrt{2}  + 3 \sqrt{2}  + 2 \sqrt[3]{2}  -  \sqrt{2 {}^{2} \times 2 {}^{1}  }

 \sqrt[3]{2}  +  \sqrt{2}  + 3 \sqrt{2}  + 2 \sqrt[3]{2}  -  \sqrt{2 {}^{2}  \times 2  }

 \sqrt[3]{2}  +  \sqrt{2}  + 3 \sqrt{2}  + 2 \sqrt[3]{2}  -  \sqrt{2 {}^{2} }  \sqrt{2}

 \sqrt[3]{2}  +  \sqrt{2}  + 3 \sqrt{2}  + 2 \sqrt[3]{2}  - 2 \sqrt{2}

(1 + 2)  \sqrt[3]{2}  + (1 + 3 - 2) \sqrt{2}

3 \sqrt[3]{2}  + (4 - 2) \sqrt{2}

3 \sqrt[3]{2}  + 2 \sqrt{2}

Perguntas interessantes