simplifique as expressões. a) n!/(n-1)!
b) (n+2)!/(n+3)!
c) (n+4)!/(n+2)!+(n+3)!
d) (n-1)!+n!/(n+1)!
Soluções para a tarefa
a) n!/(n-1)! = n*(n-1)!/(n-1)! = n
b) (n+2)!/(n+3)! = (n+2)!/((n+3)*(n+2)!) = 1/(n+3)
c) (n+4)!/(n+2)!+(n+3)! = n+3
d) ((n-1)!+n!)/(n+1)! = 1/n
.
a) n
b) 1/(n + 3)
c) (n + 3)
d) 1/n
a) n! = n.(n - 1)! = n
(n - 1)! (n - 1)!
b) (n + 2)! = (n + 2)! = 1
(n + 3)! (n + 3).(n + 2)! (n + 3)
c) (n + 4)! = (n + 4)!.(n + 3).(n + 2)! = (n + 4).(n + 3).(n + 2)!
(n + 2)! + (n + 3)! (n + 2)! + (n + 3).(n + 2)! (n + 2)!.(1 + n + 3)
Eliminamos o fator (n + 2)! e sobra:
(n + 4).(n + 3) = (n + 4).(n + 3)
(1 + n + 3) (n + 4)
Eliminamos o fator (n + 4), fica:
(n + 3)
d) (n - 1)! + n! = (n - 1)! + n.(n - 1)! =
(n + 1)! (n + 1)!
Colocamos o fator (n - 1)! em evidência. Logo, fica:
(n - 1)!.(n + 1) = (n - 1)!.(n + 1) = (n - 1)! = (n - 1)! = 1
(n + 1)! (n + 1).n! n! n.(n - 1)! n
Leia mais em:
https://brainly.com.br/tarefa/6489862