Matemática, perguntado por gica45, 1 ano atrás

simplifique as expressões

a) √50-√8

b) √80 + √180​

Soluções para a tarefa

Respondido por analuor
15

Resposta:

a)

\sqrt[4]{4}  \times ( \sqrt{5}  -  \sqrt{2} ) \times ( \sqrt{5}  +  \sqrt{2})

b)

\sqrt[6]{20}  \sqrt[3]{5}  \times ( \sqrt[3]{2}  +  \sqrt[3]{3}  \times (2 \sqrt[3]{2}  - 2 \sqrt[3]{3}  +  \sqrt[3]{36} )

.

Explicação passo-a-passo:

a)  \sqrt{50}   -  \sqrt{8}   \\ ( \sqrt[4]{50}  -  \sqrt[4]{8} ) \times ( \sqrt[4]{50}   +  \sqrt[4]{8}) \\  \sqrt[4]{2}   \times ( \sqrt[4]{25}  -  \sqrt[4]{4} ) \sqrt[4]{2}  \times (\sqrt[4]{25}   +   \sqrt[4]{4}) \\  \sqrt[4]{2}  \times(  \sqrt[4]{ {5}^{2} }  -  \sqrt[4]{ {2}^{2} } ) \sqrt[4]{2} \times (  \sqrt[4]{ {5}^{2} }  -  \sqrt[4]{ {2}^{2} } ) \\  \sqrt[4]{2}  \times ( \sqrt{5}  -  \sqrt{2} ) \sqrt[4]{2}  \times ( \sqrt{5}  +  \sqrt{2}) \\  \sqrt[4]{2}  \sqrt[4]{2}  \times ( \sqrt{5}  -  \sqrt{2} ) \times ( \sqrt{5}  +  \sqrt{2} ) \\  \sqrt[4]{4}  \times ( \sqrt{5}  -  \sqrt{2} ) \times ( \sqrt{5}  +  \sqrt{2} )

 \sqrt{80}  +  \sqrt{180}  \\ ( \sqrt[6]{80}  +   \sqrt[6]{180} ) \times ( \sqrt[3]{80}  -  \sqrt[6]{14400}  +  \sqrt[3]{80} ) \\   \sqrt[6]{20}  \times ( \sqrt[6]{4}  +  \sqrt[6]{9 } ) \times (2 \sqrt[3]{10}  - 2 \sqrt[6]{225}  +  \sqrt[3]{180} ) \\  \sqrt[6]{20}  \times ( \sqrt[6]{ {2}^{2} }  +  \sqrt[6]{ {3}^{2} }) \times (2 \sqrt[3]{10}  - 2 \sqrt[6]{ {15}^{2} }  +  \sqrt[3]{180} ) \\   \sqrt[6]{20}   \times ( \sqrt[3]{2}  +  \sqrt[3]{3} ) \times (2 \sqrt[3]{10}  - 2 \sqrt[3]{15}  +  \sqrt[3]{180}  \\  \sqrt[6]{20}  \times ( \sqrt[3]{2}  +  \sqrt[3]{3} ) \sqrt[3]{5}  \times (2 \sqrt[3]{2}  - 2 \sqrt[3]{3}  +  \sqrt[3]{36} ) \\  \sqrt[6]{20}  \sqrt[3]{5}  \times ( \sqrt[3]{2}  +  \sqrt[3]{3}  \times (2 \sqrt[3]{2}  - 2 \sqrt[3]{3}  +  \sqrt[3]{36} )

Perguntas interessantes