Matemática, perguntado por nunesgeo25, 5 meses atrás

) Simplifique as expressões.​

Anexos:

Soluções para a tarefa

Respondido por Leticia1618
0

Explicação passo-a-passo:

A)

 \sqrt{54}  +  \sqrt{486}  -  \sqrt{294}

 \sqrt{3 {}^{2} \times 6 }  +  \sqrt{9 {}^{2} \times 6 }  -  \sqrt{7 {}^{2}  \times 6}

 \sqrt{3 {}^{2} }  \sqrt{6}  +  \sqrt{9 {}^{2} }  \sqrt{6}  +  \sqrt{7 {}^{2} }  \sqrt{6}

3 \sqrt{6}  + 9 \sqrt{6}  - 7 \sqrt{6}

(3 + 9 - 7) \sqrt{6}

=>5√6

B)

 \sqrt{128}  -  \sqrt{98}  +  \sqrt{242}

2 {}^{3}  \sqrt{2}  -  \sqrt{7 {}^{2}  \times 2}  +  \sqrt{11 {}^{2} \times 2 }

8 \sqrt{2}  -  \sqrt{7 {}^{2} }  \sqrt{2}  +  \sqrt{11 {}^{2} }  \sqrt{2}

8 \sqrt{2}  - 7 \sqrt{2}  + 11 \sqrt{2}

(8 - 7 + 11) \sqrt{2}

=>12√2

C)

 \sqrt[3]{189}  +  \sqrt[3]{448}  +  \sqrt[3]{875}

 \sqrt[3]{3 {}^{3} \times 7 }  +  \sqrt[3]{4 {}^{ 3} \times 7 }  +  \sqrt[3]{5 {}^{3} \times 7 }

 \sqrt[3]{3 {}^{3} }  \sqrt[3]{7}  +  \sqrt[3]{4 {}^{3} }  \sqrt[3]{7}  +  \sqrt[3]{5 {}^{3} }   \sqrt[3]{7}

3  \sqrt[3]{7}  + 4 \sqrt[3]{7}  + 5 \sqrt[3]{7}

(3 + 4 + 5)  \sqrt[3]{7}

=>12³√7

D)

 \sqrt{396}  +  \sqrt{108}  +  \sqrt{176}  -  \sqrt{675}

 \sqrt{6 {}^{2} \times 11 }  +  \sqrt{6 {}^{2} \times 3 }  +  \sqrt{4 {}^{2} \times 11 }  +  \sqrt{15 {}^{2}  \times 3}

 \sqrt{6 {}^{2} }  \sqrt{11}  +  \sqrt{6 {}^{2} }  \sqrt{3}  +  \sqrt{4 {}^{2} }  \sqrt{11}  -  \sqrt{15 {}^{2} }  \sqrt{3}

6 \sqrt{11}  + 6 \sqrt{3 }  + 4 \sqrt{11}  - 15 \sqrt{3}

(6 + 4) \sqrt{11}  + ( 6 - 15) \sqrt{3}

10 \sqrt{11}   + ( - 9) \sqrt{3}

=>10√11-9√3

Perguntas interessantes