Matemática, perguntado por Guatemala, 1 ano atrás

Simplifique Arranjos

An,3
An-1,2

A2n,2
A2n + 1,2

Soluções para a tarefa

Respondido por Luanferrao
19
1)

\frac{A_n_,_3}{A_n_-_1_,_2} = \frac{\frac{n!}{(n-3)!}}{\frac{(n-1)!}{(n-1-2)!}}\\\\\ \frac{A_n_,_3}{A_n_-_1_,_2} =  \frac{\frac{n!}{(n-3)!}}{\frac{(n-1)!}{(n-3)!}}\\\\\  \frac{A_n_,_3}{A_n_-_1_,_2} = \frac{n!}{(n-1)!}\\\\\ \frac{A_n_,_3}{A_n_-_1_,_2} = \frac{n(n-1)!}{(n-1)!}\\\\\ \boxed{\frac{A_n_,_3}{A_n_-_1_,_2}=n}

2)

\frac{A_2_n_,_2}{A_2_n_+_1_,_2} = \frac{\frac{2n!}{(2n-2)!}}{\frac{(2n+1)!}{(2n+1-2)!}}\\\\\ \frac{A_2_n_,_2}{A_2_n_+_1_,_2}=\frac{\frac{2n!}{(2n-2)!}}{\frac{(2n+1)!}{(2n-1)!}}\\\\\ \frac{A_2_n_,_2}{A_2_n_+_1_,_2} = \frac{2n!(2n-1)!}{(2n-2)!(2n+1)!}\\\\\ \frac{A_2_n_,_2}{A_2_n_+_1_,_2}= \frac{2n!(2n-1)(2n-2)!}{(2n-2)!(2n+1)2n!}\\\\\ \boxed{\frac{A_2_n_,_2}{A_2_n_+_1_,_2}=\frac{(2n-1)}{(2n+1)} }


Perguntas interessantes