Matemática, perguntado por AnaManuela, 1 ano atrás

Simplifique: a) <var>(\sqrt{2})</var>³ b)<var>(\sqrt{27})</var>³ c) <var>(\sqrt{2})</var>³ d) <var>(\sqrt{5})</var>³ e) <var>\sqrt\sqrt{48}</var> f) ³<var>\sqrt\sqrt{128}</var> g) <var>\sqrt\sqrt{32}</var> h) <var>\sqrt\sqrt{25}</var> i) <var>\sqrt\sqrt\sqrt{36}</var> j) <var>\sqrt\sqrt{80}</var> k) <var>\sqrt\sqrt{45}</var>

Soluções para a tarefa

Respondido por CaiqueF
1

a) <var>(\sqrt{2})^{3} = \sqrt{2^{3}} = \sqrt{2^{2}.2} = 2\sqrt{2}</var>

 

b) <var>(\sqrt{27})^{3} = \sqrt{27^{3}} = \sqrt{27^{2}.27} = 27\sqrt{27} = 27\sqrt{3^{2}.3} = 27.3\sqrt{3} = 81\sqrt{3}</var>

 

c) Igual a A

 

d) mesma coisa da A, ficando 5V5

 

e)<var>\sqrt{\sqrt{48}} = \sqrt{4\sqrt{3}} = \sqrt{2^{2}\sqrt{3}} = 2\sqrt{\sqrt{3}}</var>

 

f) <var>\sqrt[3]{\sqrt{128}} = \sqrt[3]{\sqrt{2^{2}.2^{2}.2^{2}.2}} = \sqrt[3]{2.2.2\sqrt{2}} = \sqrt[3]{2^{3}\sqrt{2}} = 2\sqrt[3]{\sqrt{2}}</var>

 

g)<var>\sqrt{\sqrt{32}} = \sqrt{4\sqrt{2}} = 2\sqrt{\sqrt{2}}</var>

 

h) <var>\sqrt{\sqrt{25}} = \sqrt{5}</var>

 

i)<var>\sqrt{\sqrt{\sqrt{36}}} = \sqrt{\sqrt{6}}</var>

 

j) <var>\sqrt{\sqrt{80}} = \sqrt{4\sqrt{5}} = 2\sqrt{\sqrt{5}}</var>

 

k) <var>\sqrt{\sqrt{45}} = \sqrt{3\sqrt{5}}</var>

Perguntas interessantes