Matemática, perguntado por CamilaVeridiana, 11 meses atrás

Simplifique a expressão trigonométrica (sec (x)−cos( x)).(tg( x)+cotg( x)).sen( x) e
expresse-a unicamente em função de tg( x) .

Soluções para a tarefa

Respondido por jbsenajr
1

Resposta:

Explicação passo-a-passo:

(sec(x)-cos(x)).(tg(x)+cotg(x)).sen(x)\\\\rearranjando\\\\sen(x).(sec(x)-cos(x)).(tg(x)+cotg(x))\\\\\\onde\\sec(x)=\dfrac{1}{cos(x)}\\\\\\sen(x).(\dfrac{1}{cos(x)}-cos(x)).(tg(x)+cotg(x))\\\\\\(\dfrac{sen(x)}{cos(x)}-sen(x).cos(x)).(tg(x)+cotg(x))\\\\\\(tg(x)-sen(x).cos(x)).(tg(x)+cotg(x))\\\\\\tg^{2}(x)+tg(x).cotg(x)-tg(x).sen(x).cos(x)-sen(x).cos(x).cotg(x)\\\\\\onde\\\\tg(x).cotg(x)=\dfrac{sen(x)}{cos(x)}.\dfrac{cos(x)}{sen(x)}=1\\

tg^{2}(x)+1-\dfrac{sen(x)}{cos(x)} .sen(x).cos(x)-sen(x).cos(x).\dfrac{cos(x)}{sen(x)}\\\\\\tg^{2}(x)+1-sen^{2} (x)-cos^{2} (x)\\\\tg^{2}(x)+1-(sen^{2} (x)+cos^{2} (x))\\\\onde\\\\sen^{2} (x)+cos^{2} (x)=1\\\\tg^{2}(x)+1-(1)\\\\tg^{2}(x)\\\\Portanto\\\\\boxed{(sec (x)-cos( x)).(tg( x)+cotg( x)).sen(x)=tg^{2}(x)}

Respondido por Makaveli1996
0

( \sec(x)  -  \cos(x) ) \: . \: ( \tan(x)  +  \cot(x) ) \: . \:  \sin(x)  \\ ( \frac{1}{ \cos(x) }  -  \cos(x) ) \: . \: ( \frac{ \sin(x) }{ \cos(x) }  +  \frac{ \cos(x) }{ \sin(x) } ) \: . \:  \sin(x)  \\  \frac{1 -  \cos(x) {}^{2}  }{ \cos(x) }  \: . \:  \frac{ \sin(x) {}^{2}   +  \cos(x) {}^{2}  }{ \cos(x) \sin(x)  }  \: . \:  \sin(x)  \\  \frac{ \sin(x) {}^{2}  }{ \cos(x) }  \: . \:  \frac{1}{ \cos(x) }  \\  \frac{ \sin(x) {}^{2}  }{ \cos(x) {}^{2}  }  \\ ( \frac{  \sin(x) }{ \cos(x) } ) {}^{2}  \\ \boxed{\boxed{\boxed{ \tan(x)  {}^{2} }}} \\

atte. yrz

Perguntas interessantes