Matemática, perguntado por glaydson2, 1 ano atrás

Simplifique a expressão: (n+2)!+(n+1) vezes (n-1)! dividido por (n+1) vezes (n-1)!

Soluções para a tarefa

Respondido por Niiya
0
\dfrac{(n+2)!+(n+1)\cdot(n-1)!}{(n+1)\cdot(n-1)!}=\dfrac{(n+2)!}{(n+1)\cdot(n-1)!}+\dfrac{(n+1)\cdot(n-1)!}{(n+1)\cdot(n-1)!}\\\\\\\dfrac{(n+2)!+(n+1)\cdot(n-1)!}{(n+1)\cdot(n-1)!}=\dfrac{(n+2)!}{(n+1)\cdot(n-1)!}+1

Note que (n + 2)! = (n + 2)(n + 1)n(n - 1)!, então:

\dfrac{(n+2)!+(n+1)\cdot(n-1)!}{(n+1)\cdot(n-1)!}=\dfrac{(n+2)\cdot(n+1)\cdot n\cdot(n-1)!}{(n+1)\cdot(n-1)!}+1

Cancelando (n + 1) e (n - 1)!, temos

\dfrac{(n+2)!+(n+1)\cdot(n-1)!}{(n+1)\cdot(n-1)!}=\dfrac{(n+2)\cdot n}{1}+1\\\\\\\boxed{\boxed{\dfrac{(n+2)!+(n+1)\cdot(n-1)!}{(n+1)\cdot(n-1)!}=n^{2}+2n+1}}
Perguntas interessantes