Simplifique a expressão algébrica x^2+2x-15/x^2-2x-3 e explique passo a passo a resolução!
Soluções para a tarefa
Respondido por
4
Vamos lá.
Veja, Xlog, que a resolução é simples.
Pede-se para simplificar a expressão algébrica abaixo, que vamos chamá-la de um certo "y", apenas para deixá-la igualada a alguma coisa:
y = (x²+2x-15)/(x²-2x-3)
Agora note: se você aplicar Bháskara nas equações do numerador e do denominador encontrará que as raízes serão estas:
No numerador, temos: x²+2x-16 ---> cujas raízes são: x' = -5 e x'' = 3
No denominador, temos: x²-2x-3 ----> cujas raízes são: x' = -1; e x'' = 3
Agora veja mais isto: toda equação do 2º grau, da forma ax² + bx + c = 0, com raízes iguais a x' e x'', poderá ser simplificada em função de suas raízes da seguinte forma:
ax² + bx + c = a*(x-x')*(x-x'').
Assim, tendo a relação acima como parâmetro, então a nossa expressão "y" acima ficará sendo:
y = (x²+2x-15)/(x²-2x-3) ------ simplificando cada equação em função de suas raízes, teremos:
y = [1*(x-(-5))*(x-3)] / [1*(x-(-1))*(x-3)] ---- ou, arrumando, teremos:
y = [(x+5)*(x-3)] / [(x+1)*(x-3)] --- simplificando-se (x-3) do numerador com (x-3) do denominador, iremos ficar apenas com:
y = (x+5) / (x+1) <--- Esta é a resposta. É assim que fica, no final, a nossa expressão "y", após fazermos todas as simplificações possíveis.
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
Veja, Xlog, que a resolução é simples.
Pede-se para simplificar a expressão algébrica abaixo, que vamos chamá-la de um certo "y", apenas para deixá-la igualada a alguma coisa:
y = (x²+2x-15)/(x²-2x-3)
Agora note: se você aplicar Bháskara nas equações do numerador e do denominador encontrará que as raízes serão estas:
No numerador, temos: x²+2x-16 ---> cujas raízes são: x' = -5 e x'' = 3
No denominador, temos: x²-2x-3 ----> cujas raízes são: x' = -1; e x'' = 3
Agora veja mais isto: toda equação do 2º grau, da forma ax² + bx + c = 0, com raízes iguais a x' e x'', poderá ser simplificada em função de suas raízes da seguinte forma:
ax² + bx + c = a*(x-x')*(x-x'').
Assim, tendo a relação acima como parâmetro, então a nossa expressão "y" acima ficará sendo:
y = (x²+2x-15)/(x²-2x-3) ------ simplificando cada equação em função de suas raízes, teremos:
y = [1*(x-(-5))*(x-3)] / [1*(x-(-1))*(x-3)] ---- ou, arrumando, teremos:
y = [(x+5)*(x-3)] / [(x+1)*(x-3)] --- simplificando-se (x-3) do numerador com (x-3) do denominador, iremos ficar apenas com:
y = (x+5) / (x+1) <--- Esta é a resposta. É assim que fica, no final, a nossa expressão "y", após fazermos todas as simplificações possíveis.
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
adjemir:
Disponha, Xlog, e bastante sucesso. Um cordial abraço.
Perguntas interessantes
História,
8 meses atrás
Matemática,
8 meses atrás
Matemática,
8 meses atrás
Geografia,
1 ano atrás
História,
1 ano atrás