simplifique a espressão y= sen (135°+x) +sen (135°-x)
obrigado.
Soluções para a tarefa
Respondido por
0
Caso esteja pelo app, e tenha problemas para visualizar esta resposta, experimente abrir pelo navegador: https://brainly.com.br/tarefa/10527552
——————————
Simplificar a expressão y = sen(135° + x) + sen(135° – x).
—————
Há várias formas de se resolver esse problema. Você pode usar, por exemplo, uma das fórmulas de transformação de soma em produto (prostaférese):
•![\mathsf{sen(p)+sen(q)=2\cdot sen\!\left(\dfrac{p+q}{2}\right)\cdot cos\!\left(\dfrac{p-q}{2}\right)} \mathsf{sen(p)+sen(q)=2\cdot sen\!\left(\dfrac{p+q}{2}\right)\cdot cos\!\left(\dfrac{p-q}{2}\right)}](https://tex.z-dn.net/?f=%5Cmathsf%7Bsen%28p%29%2Bsen%28q%29%3D2%5Ccdot+sen%5C%21%5Cleft%28%5Cdfrac%7Bp%2Bq%7D%7B2%7D%5Cright%29%5Ccdot+cos%5C%21%5Cleft%28%5Cdfrac%7Bp-q%7D%7B2%7D%5Cright%29%7D)
Usando a fórmula acima, para p = 135° + x e q = 135° – x, você obtém
![\mathsf{y=sen(135^\circ+x)+sen(135^\circ-x)}\\\\\\ \mathsf{y=2\cdot sen\!\left(\dfrac{(135^\circ+x)+(135^\circ-x)}{2}\right)\cdot cos\!\left(\dfrac{(135^\circ+x)-(135^\circ-x)}{2}\right)}\\\\\\ \mathsf{y=2\cdot sen\!\left(\dfrac{135^\circ+\diagup\!\!\!\! x+135^\circ-\diagup\!\!\!\! x}{2}\right)\cdot cos\!\left(\dfrac{\,\diagdown\!\!\!\!\!\!\! 135^\circ+x-\,\diagdown\!\!\!\!\!\!\! 135^\circ+x}{2}\right)}\\\\\\ \mathsf{y=2\cdot sen\!\left(\dfrac{135^\circ+135^\circ}{2}\right)\cdot cos\!\left(\dfrac{x+x}{2}\right)} \mathsf{y=sen(135^\circ+x)+sen(135^\circ-x)}\\\\\\ \mathsf{y=2\cdot sen\!\left(\dfrac{(135^\circ+x)+(135^\circ-x)}{2}\right)\cdot cos\!\left(\dfrac{(135^\circ+x)-(135^\circ-x)}{2}\right)}\\\\\\ \mathsf{y=2\cdot sen\!\left(\dfrac{135^\circ+\diagup\!\!\!\! x+135^\circ-\diagup\!\!\!\! x}{2}\right)\cdot cos\!\left(\dfrac{\,\diagdown\!\!\!\!\!\!\! 135^\circ+x-\,\diagdown\!\!\!\!\!\!\! 135^\circ+x}{2}\right)}\\\\\\ \mathsf{y=2\cdot sen\!\left(\dfrac{135^\circ+135^\circ}{2}\right)\cdot cos\!\left(\dfrac{x+x}{2}\right)}](https://tex.z-dn.net/?f=%5Cmathsf%7By%3Dsen%28135%5E%5Ccirc%2Bx%29%2Bsen%28135%5E%5Ccirc-x%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By%3D2%5Ccdot+sen%5C%21%5Cleft%28%5Cdfrac%7B%28135%5E%5Ccirc%2Bx%29%2B%28135%5E%5Ccirc-x%29%7D%7B2%7D%5Cright%29%5Ccdot+cos%5C%21%5Cleft%28%5Cdfrac%7B%28135%5E%5Ccirc%2Bx%29-%28135%5E%5Ccirc-x%29%7D%7B2%7D%5Cright%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By%3D2%5Ccdot+sen%5C%21%5Cleft%28%5Cdfrac%7B135%5E%5Ccirc%2B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+x%2B135%5E%5Ccirc-%5Cdiagup%5C%21%5C%21%5C%21%5C%21+x%7D%7B2%7D%5Cright%29%5Ccdot+cos%5C%21%5Cleft%28%5Cdfrac%7B%5C%2C%5Cdiagdown%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21+135%5E%5Ccirc%2Bx-%5C%2C%5Cdiagdown%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21+135%5E%5Ccirc%2Bx%7D%7B2%7D%5Cright%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By%3D2%5Ccdot+sen%5C%21%5Cleft%28%5Cdfrac%7B135%5E%5Ccirc%2B135%5E%5Ccirc%7D%7B2%7D%5Cright%29%5Ccdot+cos%5C%21%5Cleft%28%5Cdfrac%7Bx%2Bx%7D%7B2%7D%5Cright%29%7D)
![\mathsf{y=2\cdot sen\!\left(\dfrac{\diagup\!\!\!\! 2\cdot 135^\circ}{\diagup\!\!\!\! 2}\right)\cdot cos\!\left(\dfrac{\diagdown\!\!\!\! 2x}{\diagdown\!\!\!\! 2}\right)}\\\\\\ \mathsf{y=2\cdot sen(135^\circ)\cdot cos(x)}\\\\ \mathsf{y=\diagup\!\!\!\! 2\cdot \dfrac{\sqrt{2}}{\diagup\!\!\!\! 2}\cdot cos(x)} \mathsf{y=2\cdot sen\!\left(\dfrac{\diagup\!\!\!\! 2\cdot 135^\circ}{\diagup\!\!\!\! 2}\right)\cdot cos\!\left(\dfrac{\diagdown\!\!\!\! 2x}{\diagdown\!\!\!\! 2}\right)}\\\\\\ \mathsf{y=2\cdot sen(135^\circ)\cdot cos(x)}\\\\ \mathsf{y=\diagup\!\!\!\! 2\cdot \dfrac{\sqrt{2}}{\diagup\!\!\!\! 2}\cdot cos(x)}](https://tex.z-dn.net/?f=%5Cmathsf%7By%3D2%5Ccdot+sen%5C%21%5Cleft%28%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%5Ccdot+135%5E%5Ccirc%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%7D%5Cright%29%5Ccdot+cos%5C%21%5Cleft%28%5Cdfrac%7B%5Cdiagdown%5C%21%5C%21%5C%21%5C%21+2x%7D%7B%5Cdiagdown%5C%21%5C%21%5C%21%5C%21+2%7D%5Cright%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By%3D2%5Ccdot+sen%28135%5E%5Ccirc%29%5Ccdot+cos%28x%29%7D%5C%5C%5C%5C+%5Cmathsf%7By%3D%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%5Ccdot+%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%7D%5Ccdot+cos%28x%29%7D)
<———— esta é a resposta simplificada.
Bons estudos! :-)
——————————
Simplificar a expressão y = sen(135° + x) + sen(135° – x).
—————
Há várias formas de se resolver esse problema. Você pode usar, por exemplo, uma das fórmulas de transformação de soma em produto (prostaférese):
•
Usando a fórmula acima, para p = 135° + x e q = 135° – x, você obtém
Bons estudos! :-)
Perguntas interessantes