Matemática, perguntado por Usuário anônimo, 1 ano atrás

Simplefique usando a propriedade conveniente:

A)
 \sqrt[8]{ {3}^{2} }
B)
 \sqrt{ {a}^{10} }
C)

 \sqrt[4]{b}
D)
 \sqrt[]{ {16}^{} }

E)
 \sqrt[3]{64}
F)
 \sqrt[3]{27}
G)
 \sqrt[3]{8 {a}^{6} }
H)

 \sqrt{64x {}^{2} } {y}^{8}
I)
 \sqrt[4]{16x {}^{8} }
J)
 \sqrt{25 \times  {a}^{2} }  \times b {}^{2}
L)

 \sqrt{75}
M)

 \sqrt{18}
N)

 \sqrt{50}
O)
 \sqrt{48 {}^{a} }
P)
 \sqrt{ \frac{9}{x {}^{2} } }
Q)
 \sqrt{ \frac{25 \times a}{ {x}^{10} } }
N)
 \sqrt{ \frac{49 \times \: a {}^{2}  }{16} }


Soluções para a tarefa

Respondido por carloswms2012
2
Olá, tudo bem?

Vamos lá:
A) \sqrt[8]{3^2}= \sqrt[8\div2]{3^{2\div2}}= \sqrt[4]{3}=\ \textgreater \ \boxed{\boxed{3^{ \frac{1}{4} } }}

B) \sqrt{a^{10}}= \sqrt[2\div2]{a^{10\div2}}=\ \textgreater \ \boxed{\boxed{a^5 }}\\\\\\ C) \sqrt[4]{b}=\ \textgreater \ \boxed{\boxed{b^{\frac{1}{4}} }}\\\\\\ D) \sqrt{16}= \sqrt{4^2}= \sqrt[2\div2]{4^{2\div2}}=\ \textgreater \ \boxed{\boxed{4 }}\\\\\\ E) \sqrt[3]{64}= \sqrt[3]{4^3}= \sqrt[3\div3]{4^{3\div3}}=\ \textgreater \ \boxed{\boxed{4 }}\\\\\\ F) \sqrt[3]{27}= \sqrt[3]{3^3}= \sqrt[3\div3]{3^{3\div3}}=\ \textgreater \ \boxed{\boxed{3 }}

G) \sqrt[3]{8a^6}= \sqrt[3]{2^3a^6}= \sqrt[3\div3]{2^{3\div3}\cdot a^{6\div3}} =\ \textgreater \ \boxed{\boxed{2a^2}}\\\\\\ H) \sqrt{64x^2y^8} = \sqrt{8^2x^2y^8}= \sqrt[2\div2]{8^{2\div2}\cdot x^{2\div2}\cdot y{8^{8\div2}}} =\ \textgreater \ \boxed{\boxed{8xy^4}}\\\\\\ I) \sqrt[4]{16x^8} = \sqrt[4]{2^4\cdot x^8} = \sqrt[4\div4]{2^{4\div4}\cdot x^{8\div2}} =\ \textgreater \ \boxed{\boxed{2x^4}}\\\\\\ J) \sqrt{25\cdot a^2\cdot b^2}= \sqrt{5^2\cdot a^2\cdot b^2}=\ \textgreater \ \boxed{\boxed{5ab }}\\\\\\ L) \sqrt{75} = \sqrt{5^2\cdot3}=\ \textgreater \ \boxed{\boxed{5\sqrt{3}}}

M) \sqrt{18}= \sqrt{3^2\cdot2}=\ \textgreater \ \boxed{\boxed{3\sqrt{2}}}\\\\\\ N) \sqrt{50} = \sqrt{5^2\cdot2}=\ \textgreater \ \boxed{\boxed{5\sqrt{2} }}\\\\\\ O) \sqrt{48^a}=\ \textgreater \ \boxed{\boxed{48^{ \frac{a}{2} } }}\\\\\\ P) \sqrt{ \frac{9}{x^2} } = \sqrt{\frac{3^2}{x^2}}=\ \textgreater \ \boxed{\boxed{\frac{3}{x} }}\\\\\\ Q) \sqrt{\frac{25a}{x^{10}}}=\sqrt{\frac{5^2\cdot a}{x^{10}}}= \sqrt[2\div2]{\frac{5^{2\div2}\cdot a^{1\div2}}{x^{10\div2}}}=\ \textgreater \ \boxed{\boxed{\frac{5a^{\frac{1}{2}}}{x^5}}}\\\\\\

R) \sqrt{\frac{49a^2}{16}}= \sqrt{\frac{7^2\cdot a^2}{4^2}}=\ \textgreater \ \boxed{\boxed{\frac{7a}{4}}}

Acho que é só isso. rsrs
Espero ter ajudado.
Bons estudos!
Anexos:
Respondido por Makaveli1996
0

Oie, Td Bom?!

A)

 \sqrt[8]{3 {}^{2} }  =  \sqrt[4]{3}  = 3 {}^{ \frac{1}{4} }

B)

\sqrt{ {a}^{10} } = a {}^{5}

C)

 \sqrt[4]{b} = b {}^{ \frac{1}{4} }

D)

\sqrt[]{ {16}^{} } =  \sqrt{4 {}^{2} }  = 4

E)

 \sqrt[3]{64} =  \sqrt[3]{4 {}^{3} }  = 4

F)

 \sqrt[3]{27} =  \sqrt[3]{3 {}^{3} }  = 3

G)

\sqrt[3]{8 {a}^{6} } =  \sqrt[3]{8}  \sqrt[3]{a {}^{6} }  =  \sqrt[3]{2 {}^{3} } a {}^{2}  = 2a {}^{2}

H)

\sqrt{64x {}^{2} } {y}^{8} =  \sqrt{64}  \sqrt{x {}^{2} } y {}^{8}  =  \sqrt{8 {}^{2} } xy {}^{8}  = 8xy {}^{8}

I)

\sqrt[4]{16x {}^{8} } =  \sqrt[4]{16}  \sqrt[4]{x {}^{8} }  =  \sqrt[4]{2 {}^{4} } x {}^{2}  = 2x {}^{2}

J)

\sqrt{25 {a}^{2} }  b {}^{2} =  \sqrt{25}  \sqrt{a {}^{2} } b {}^{2}  =  \sqrt{5 {}^{2} } ab {}^{2} = 5ab {}^{2}

L)

\sqrt{75} =  \sqrt{5 {}^{2}  \times 3}  =  \sqrt{5 {}^{2} }  \sqrt{3}  = 5 \sqrt{3}

M)

 \sqrt{18}  =  \sqrt{3 {}^{2} \times 2 }  =  \sqrt{3 {}^{2} }  \sqrt{2}  = 3 \sqrt{2}

N)

 \sqrt{50} =  \sqrt{5 {}^{2} \times 2 }  =  \sqrt{5 {}^{2} }  \sqrt{2}  = 5 \sqrt{2}

O)

\sqrt{48 {}^{a} } = 48 {}^{ \frac{a}{2} }

P)

\sqrt{ \frac{9}{x {}^{2} } } =  \frac{ \sqrt{9} }{ \sqrt{x {}^{2} } }  =  \frac{ \sqrt{3 {}^{2} } }{x}  =  \frac{3}{x}

Q)

\sqrt{ \frac{25 a}{ {x}^{10} } } =  \frac{ \sqrt{5 {}^{2} \times a } }{x {}^{10} }  =  \frac{5a {}^{ \frac{1}{2} } }{x {}^{5} }

R)

\sqrt{ \frac{49  a {}^{2} }{16} } =  \frac{ \sqrt{49a {}^{2} } }{ \sqrt{16} }  =  \frac{ \sqrt{49} \sqrt{a {}^{2} }  }{ \sqrt{4 {}^{2} } }  =  \frac{ \sqrt{7 {}^{2} } a}{4}  =  \frac{7a}{4}

Att. Makaveli1996

Perguntas interessantes