Matemática, perguntado por adriancoastp7ie1d, 1 ano atrás

Será que alguém poderia me ajudar?
Estou tentando resolver esta questão...
Em uma Universidade, no Departamento de Veterinária, existem 7 professores com especialização em Parasitologia e 4, em Microbiologia. Em um congresso, para a exposição de seus trabalhos, serão formadas equipes da seguinte forma: 4 com especialização em Parasitologia e 2 com especialização em Microbiologia. Quantas equipes diferentes poderão ser formadas?

Soluções para a tarefa

Respondido por caiooliveira105
0
C 4 em cima e 2 em baixo =4!/(4-2)! = 24/2 = 12 equipes.

adriancoastp7ie1d: Obrigado!
adriancoastp7ie1d: Mas por curiosidade os professores não entram nesta resolução?
Respondido por vfsvitoriaoxbpup
4

Eu fiz assim:

Sabemos que temos 7 professores de parasitologia e 4 de microbiologia. Ele quer escolher 4 professores de parasitologia e 2 de microbiologia. Então, como a ordem da disposição dos professores não altera o grupo em si, a gente usa combinação.

Primeiro escolhemos 4 professores de parasitologia do total de 7 realizando a seguinte combinação:

C(7,4) = 7! / 4! 3! = 7.6.5.4! / 4! 3.2.1 = 35 possibilidades

Depois, escolhemos 2 professores de microbiologia num total de 4 realizando a seguinte combinação:

C(4,2) = 4! / 2! 2! = 4.3.2! / 2! 2.1 = 6 possibilidades

Por fim, como queremos que esses dois eventos aconteçam juntos para formar as equipes, usamos a regra do "e", que é, simplesmente, multiplicar as duas possibilidades dos dois eventos ocorrerem simultaneamente. Fica:

35 . 6 = 210 equipes

Perguntas interessantes