Matemática, perguntado por carlossombra855, 1 ano atrás

SENDO Z(X,Y)=e~x+3y ,x(t)=t² e y (t)= t³+1 entao dz/dt e:

Soluções para a tarefa

Respondido por andresccp
3
pela regra da cadeia
 \boxed{\boxed{\frac{dZ}{dt} =\left(  \frac{\partial Z}{\partial x} * \frac{\partial x}{\partial t} \right) +  \left(\frac{\partial Z}{\partial y} * \frac{\partial  y}{\partial t} \right)}}

temos:

\bmatrix Z=e^x +3y\\\\ \frac{\partial Z}{\partial x} = e^x +0 \\\\\frac{\partial Z}{\partial y}=0+3*1 \\\\\\ x=t^2\\\\ \frac{\partial x}{\partial t}= 2t \\\\\\ y=t^3+1\\\\ \frac{\partial y}{\partial t}=3t \end

substituindo
 \frac{\partial Z}{\partial x} = e^x*2t +3*3t^2\\\\  \frac{\partial Z}{\partial x} = e^x*2t + 9t^2\\\\ \boxed{\boxed{\frac{\partial Z}{\partial x} = e^{t^2}*2t+ 9t^2}}

Perguntas interessantes