Sendo z um angulo agudo tal que cos z = 3 sen z, calcula os valores exatos de tg z, sen z e cos z
Soluções para a tarefa
Respondido por
6
Caso tenha problemas para visualizar a resposta pelo aplicativo, experimente abrir pelo navegador: https://brainly.com.br/tarefa/4200285
_______________
![\mathsf{cos\,z=3\,sen\,z\qquad\quad(i)} \mathsf{cos\,z=3\,sen\,z\qquad\quad(i)}](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%5C%2Cz%3D3%5C%2Csen%5C%2Cz%5Cqquad%5Cquad%28i%29%7D)
Elevando os dois lados ao quadrado, temos
![\mathsf{(cos\,z)^2=(3\,sen\,z)^2}\\\\ \mathsf{cos^2\,z=9\,sen^2\,z}\qquad\quad\textsf{(mas }\mathsf{cos^2\,z=1-sen^2\,z}\textsf{)}\\\\ \mathsf{1-sen^2\,z=9\,sen^2\,z}\\\\ \mathsf{1=9\,sen^2\,z+sen^2\,z} \mathsf{(cos\,z)^2=(3\,sen\,z)^2}\\\\ \mathsf{cos^2\,z=9\,sen^2\,z}\qquad\quad\textsf{(mas }\mathsf{cos^2\,z=1-sen^2\,z}\textsf{)}\\\\ \mathsf{1-sen^2\,z=9\,sen^2\,z}\\\\ \mathsf{1=9\,sen^2\,z+sen^2\,z}](https://tex.z-dn.net/?f=%5Cmathsf%7B%28cos%5C%2Cz%29%5E2%3D%283%5C%2Csen%5C%2Cz%29%5E2%7D%5C%5C%5C%5C+%5Cmathsf%7Bcos%5E2%5C%2Cz%3D9%5C%2Csen%5E2%5C%2Cz%7D%5Cqquad%5Cquad%5Ctextsf%7B%28mas+%7D%5Cmathsf%7Bcos%5E2%5C%2Cz%3D1-sen%5E2%5C%2Cz%7D%5Ctextsf%7B%29%7D%5C%5C%5C%5C+%5Cmathsf%7B1-sen%5E2%5C%2Cz%3D9%5C%2Csen%5E2%5C%2Cz%7D%5C%5C%5C%5C+%5Cmathsf%7B1%3D9%5C%2Csen%5E2%5C%2Cz%2Bsen%5E2%5C%2Cz%7D)
![\mathsf{1=10\,sen^2\,z}\\\\ \mathsf{sen^2\,z=\dfrac{1}{10}}\\\\\\ \mathsf{sen\,z=\pm\,\sqrt{\dfrac{1}{10}}}\\\\\\ \mathsf{sen\,z=\pm\,\dfrac{1}{\sqrt{10}}} \mathsf{1=10\,sen^2\,z}\\\\ \mathsf{sen^2\,z=\dfrac{1}{10}}\\\\\\ \mathsf{sen\,z=\pm\,\sqrt{\dfrac{1}{10}}}\\\\\\ \mathsf{sen\,z=\pm\,\dfrac{1}{\sqrt{10}}}](https://tex.z-dn.net/?f=%5Cmathsf%7B1%3D10%5C%2Csen%5E2%5C%2Cz%7D%5C%5C%5C%5C+%5Cmathsf%7Bsen%5E2%5C%2Cz%3D%5Cdfrac%7B1%7D%7B10%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bsen%5C%2Cz%3D%5Cpm%5C%2C%5Csqrt%7B%5Cdfrac%7B1%7D%7B10%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bsen%5C%2Cz%3D%5Cpm%5C%2C%5Cdfrac%7B1%7D%7B%5Csqrt%7B10%7D%7D%7D)
Como
é um ângulo agudo, isto é,
então o seno é positivo. Portanto,
![\boxed{\begin{array}{c}\mathsf{sen\,z=\dfrac{1}{\sqrt{10}}} \end{array}}\qquad\quad\checkmark \boxed{\begin{array}{c}\mathsf{sen\,z=\dfrac{1}{\sqrt{10}}} \end{array}}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7Bsen%5C%2Cz%3D%5Cdfrac%7B1%7D%7B%5Csqrt%7B10%7D%7D%7D+%5Cend%7Barray%7D%7D%5Cqquad%5Cquad%5Ccheckmark)
________
• Encontrando o cosseno:
Pela equação
devemos ter
![\mathsf{cos\,z=3\,sen\,z}\\\\ \mathsf{cos\,z=3\cdot \dfrac{1}{\sqrt{10}}}\\\\\\ \boxed{\begin{array}{c}\mathsf{cos\,z=\dfrac{3}{\sqrt{10}}} \end{array}}\qquad\quad\checkmark \mathsf{cos\,z=3\,sen\,z}\\\\ \mathsf{cos\,z=3\cdot \dfrac{1}{\sqrt{10}}}\\\\\\ \boxed{\begin{array}{c}\mathsf{cos\,z=\dfrac{3}{\sqrt{10}}} \end{array}}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%5C%2Cz%3D3%5C%2Csen%5C%2Cz%7D%5C%5C%5C%5C+%5Cmathsf%7Bcos%5C%2Cz%3D3%5Ccdot+%5Cdfrac%7B1%7D%7B%5Csqrt%7B10%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7Bcos%5C%2Cz%3D%5Cdfrac%7B3%7D%7B%5Csqrt%7B10%7D%7D%7D+%5Cend%7Barray%7D%7D%5Cqquad%5Cquad%5Ccheckmark)
________
• Encontrando a tangente:
![\mathsf{tg\,z=\dfrac{sen\,z}{cos\,z}}\\\\\\ \mathsf{tg\,z=\dfrac{~\frac{1}{\sqrt{10}}~}{\frac{3}{\sqrt{10}}}}\\\\\\ \mathsf{tg\,z=\dfrac{1}{\sqrt{\,\diagup\!\!\!\!\!\! 10}}\cdot \dfrac{\sqrt{\,\diagup\!\!\!\!\!\! 10}}{3}}\\\\\\\\ \boxed{\begin{array}{c}\mathsf{tg\,z=\dfrac{1}{3}} \end{array}}\qquad\checkmark \mathsf{tg\,z=\dfrac{sen\,z}{cos\,z}}\\\\\\ \mathsf{tg\,z=\dfrac{~\frac{1}{\sqrt{10}}~}{\frac{3}{\sqrt{10}}}}\\\\\\ \mathsf{tg\,z=\dfrac{1}{\sqrt{\,\diagup\!\!\!\!\!\! 10}}\cdot \dfrac{\sqrt{\,\diagup\!\!\!\!\!\! 10}}{3}}\\\\\\\\ \boxed{\begin{array}{c}\mathsf{tg\,z=\dfrac{1}{3}} \end{array}}\qquad\checkmark](https://tex.z-dn.net/?f=%5Cmathsf%7Btg%5C%2Cz%3D%5Cdfrac%7Bsen%5C%2Cz%7D%7Bcos%5C%2Cz%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Btg%5C%2Cz%3D%5Cdfrac%7B%7E%5Cfrac%7B1%7D%7B%5Csqrt%7B10%7D%7D%7E%7D%7B%5Cfrac%7B3%7D%7B%5Csqrt%7B10%7D%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Btg%5C%2Cz%3D%5Cdfrac%7B1%7D%7B%5Csqrt%7B%5C%2C%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21+10%7D%7D%5Ccdot+%5Cdfrac%7B%5Csqrt%7B%5C%2C%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21+10%7D%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7Btg%5C%2Cz%3D%5Cdfrac%7B1%7D%7B3%7D%7D+%5Cend%7Barray%7D%7D%5Cqquad%5Ccheckmark)
Bons estudos! :-)
Tags: relação trigonométrica fundamental triângulo retângulo ângulo seno sen sin cosseno cos tangente tan tg trigonometria geometria
_______________
Elevando os dois lados ao quadrado, temos
Como
________
• Encontrando o cosseno:
Pela equação
________
• Encontrando a tangente:
Bons estudos! :-)
Tags: relação trigonométrica fundamental triângulo retângulo ângulo seno sen sin cosseno cos tangente tan tg trigonometria geometria
Perguntas interessantes
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Informática,
1 ano atrás
Geografia,
1 ano atrás
História,
1 ano atrás