Sendo z = ln calcular o valor de x. + y.. a resposta é 1
Soluções para a tarefa
Respondido por
3
Resposta:
z= ln √(x²+y²)
z =(1/2) * ln (x²+y²)
dz/dx=(1/2) * (x²+y²)'/(x²+y²)
dz/dx=(1/2) * (2x)/(x²+y²)
dz/dx=x/(x²+y²)
dz/dy=(1/2) * (x²+y²)'/(x²+y²)
dz/dy=(1/2) * (2y)/(x²+y²)
dz/dy=y/(x²+y²)
x* dz/dx + y * dz/dy
=x²/(x²+y²) + y²/(x²+y²)
=(x²+y²)/(x²+y²) = 1
Respondido por
2
Antes, convém lembrar a seguinte regra:
Que também vale para duas variáveis considerando a derivação parcial.
Então, temos que:
Assim, temos:
Além disso:
Devemos calcular:
Perguntas interessantes
Biologia,
6 meses atrás
Português,
6 meses atrás
Ed. Física,
10 meses atrás
Matemática,
10 meses atrás
Química,
1 ano atrás
Matemática,
1 ano atrás
Consegue me ajudar com essa?
https://brainly.com.br/tarefa/27017643
Ele pede derivada U e V e nessa resposta que deram infelizmente nao bate