Matemática, perguntado por jeffersonmoura00, 7 meses atrás

Sendo x tal que 0 ≤ x ≤ π/2 e sen x = 7/17. Determine o valor da sec x


lucaspedrosasi: Tem gabarito?

Soluções para a tarefa

Respondido por niltonjunior20oss764
0

\mathrm{Seja}\ x\in{\left[0,\dfrac{\pi}{2}\right]}\ \mathrm{tal\ que}\ \sin{x}=\dfrac{7}{17}.

\mathrm{O}\ \cos{x}\ \mathrm{pode\ ser\ obtido\ pela\ seguinte\ rela\c{c}\tilde{a}o}\text{:}

\sin^2{x}+\cos^2{x}=1\Longrightarrow \cos{x}=\pm\sqrt{1-\sin^2{x}}

\Longrightarrow\cos{x}=\pm\sqrt{1-\bigg(\dfrac{7}{17}\bigg)^2}=\pm\sqrt{\dfrac{240}{289}}\Longrightarrow \cos{x}=\pm\dfrac{4\sqrt{15}}{17}

\Longrightarrow \cos{x}=\dfrac{4\sqrt{15}}{17}\ \because\ 0\leq x\leq\dfrac{\pi}{2}

\mathrm{Desse\ modo,\ a}\ \sec{x}\ \mathrm{ser\acute{a}}\text{:}

\sec{x}=\dfrac{1}{\cos{x}}\Longrightarrow\sec{x}=\dfrac{1}{\frac{4\sqrt{15}}{17}}=\dfrac{17}{4\sqrt{15}}\ \therefore\ \boxed{\sec{x}=\dfrac{17\sqrt{15}}{60}}

Perguntas interessantes