Sendo
obter em função de [text]t[/text] o valor de:
a) ![x^{2} + \frac{1}{ x^{2}} x^{2} + \frac{1}{ x^{2}}](https://tex.z-dn.net/?f=x%5E%7B2%7D++%2B++%5Cfrac%7B1%7D%7B+x%5E%7B2%7D%7D+)
b)
Soluções para a tarefa
Respondido por
1
a) ![x^{2}+\dfrac{1}{x^{2}} x^{2}+\dfrac{1}{x^{2}}](https://tex.z-dn.net/?f=x%5E%7B2%7D%2B%5Cdfrac%7B1%7D%7Bx%5E%7B2%7D%7D)
![x+\dfrac{1}{x}=t\\ \\ \left(x+\dfrac{1}{x} \right )^{2}=t^{2} x+\dfrac{1}{x}=t\\ \\ \left(x+\dfrac{1}{x} \right )^{2}=t^{2}](https://tex.z-dn.net/?f=x%2B%5Cdfrac%7B1%7D%7Bx%7D%3Dt%5C%5C+%5C%5C+%5Cleft%28x%2B%5Cdfrac%7B1%7D%7Bx%7D+%5Cright+%29%5E%7B2%7D%3Dt%5E%7B2%7D)
Utilizando o desenvolvimento do quadrado de dois termos (produtos notáveis):
![\left(a+b \right )^{2}=a^{2}+2ab+b^{2} \left(a+b \right )^{2}=a^{2}+2ab+b^{2}](https://tex.z-dn.net/?f=%5Cleft%28a%2Bb+%5Cright+%29%5E%7B2%7D%3Da%5E%7B2%7D%2B2ab%2Bb%5E%7B2%7D)
para
e
, temos
![x^{2}+2x \cdot \dfrac{1}{x}+\dfrac{1}{x^{2}}=t^{2}\\ \\ x^{2}+2+\dfrac{1}{x^{2}}=t^{2}\\ \\ \boxed{x^{2}+\dfrac{1}{x^{2}}=t^{2}-2} x^{2}+2x \cdot \dfrac{1}{x}+\dfrac{1}{x^{2}}=t^{2}\\ \\ x^{2}+2+\dfrac{1}{x^{2}}=t^{2}\\ \\ \boxed{x^{2}+\dfrac{1}{x^{2}}=t^{2}-2}](https://tex.z-dn.net/?f=x%5E%7B2%7D%2B2x+%5Ccdot+%5Cdfrac%7B1%7D%7Bx%7D%2B%5Cdfrac%7B1%7D%7Bx%5E%7B2%7D%7D%3Dt%5E%7B2%7D%5C%5C+%5C%5C+x%5E%7B2%7D%2B2%2B%5Cdfrac%7B1%7D%7Bx%5E%7B2%7D%7D%3Dt%5E%7B2%7D%5C%5C+%5C%5C+%5Cboxed%7Bx%5E%7B2%7D%2B%5Cdfrac%7B1%7D%7Bx%5E%7B2%7D%7D%3Dt%5E%7B2%7D-2%7D)
b)![x^{3}+x^{-3} x^{3}+x^{-3}](https://tex.z-dn.net/?f=x%5E%7B3%7D%2Bx%5E%7B-3%7D)
![x+\dfrac{1}{x}=t\\ \\ x+x^{-1}=t\\ \\ \left(x+x^{-1} \right )^{3}=t^{3} x+\dfrac{1}{x}=t\\ \\ x+x^{-1}=t\\ \\ \left(x+x^{-1} \right )^{3}=t^{3}](https://tex.z-dn.net/?f=x%2B%5Cdfrac%7B1%7D%7Bx%7D%3Dt%5C%5C+%5C%5C+x%2Bx%5E%7B-1%7D%3Dt%5C%5C+%5C%5C+%5Cleft%28x%2Bx%5E%7B-1%7D+%5Cright+%29%5E%7B3%7D%3Dt%5E%7B3%7D)
Utilizando o desenvolvimento do cubo da soma de dois termos:
![\left(a+b \right )^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} \left(a+b \right )^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}](https://tex.z-dn.net/?f=%5Cleft%28a%2Bb+%5Cright+%29%5E%7B3%7D%3Da%5E%7B3%7D%2B3a%5E%7B2%7Db%2B3ab%5E%7B2%7D%2Bb%5E%7B3%7D)
para
e
, temos
![x^{3}+3x^{2}x^{-1}+3xx^{-2}+x^{-3}=t^{3}\\ \\ x^{3}+3x+3x^{-1}+x^{-3}=t^{3}\\ \\ x^{3}+3\cdot \underbrace{\left(x+x^{-1} \right )}_{t}+x^{-3}=t^{3}\\ \\ x^{3}+3t+x^{-3}=t^{3}\\ \\ \boxed{x^{3}+x^{-3}=t^{3}-3t} x^{3}+3x^{2}x^{-1}+3xx^{-2}+x^{-3}=t^{3}\\ \\ x^{3}+3x+3x^{-1}+x^{-3}=t^{3}\\ \\ x^{3}+3\cdot \underbrace{\left(x+x^{-1} \right )}_{t}+x^{-3}=t^{3}\\ \\ x^{3}+3t+x^{-3}=t^{3}\\ \\ \boxed{x^{3}+x^{-3}=t^{3}-3t}](https://tex.z-dn.net/?f=x%5E%7B3%7D%2B3x%5E%7B2%7Dx%5E%7B-1%7D%2B3xx%5E%7B-2%7D%2Bx%5E%7B-3%7D%3Dt%5E%7B3%7D%5C%5C+%5C%5C+x%5E%7B3%7D%2B3x%2B3x%5E%7B-1%7D%2Bx%5E%7B-3%7D%3Dt%5E%7B3%7D%5C%5C+%5C%5C+x%5E%7B3%7D%2B3%5Ccdot+%5Cunderbrace%7B%5Cleft%28x%2Bx%5E%7B-1%7D+%5Cright+%29%7D_%7Bt%7D%2Bx%5E%7B-3%7D%3Dt%5E%7B3%7D%5C%5C+%5C%5C+x%5E%7B3%7D%2B3t%2Bx%5E%7B-3%7D%3Dt%5E%7B3%7D%5C%5C+%5C%5C+%5Cboxed%7Bx%5E%7B3%7D%2Bx%5E%7B-3%7D%3Dt%5E%7B3%7D-3t%7D)
Utilizando o desenvolvimento do quadrado de dois termos (produtos notáveis):
para
b)
Utilizando o desenvolvimento do cubo da soma de dois termos:
para
Perguntas interessantes
Matemática,
1 ano atrás
História,
1 ano atrás
Português,
1 ano atrás
Física,
1 ano atrás
Informática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Filosofia,
1 ano atrás