Matemática, perguntado por edu900, 1 ano atrás

Sendo f(x)=2x-sen(x), a derivada f"( \pi ) é igual a:

Soluções para a tarefa

Respondido por andresccp
0
f(x) = 2x-sen(x)

a derivada de uma soma é a soma das derivadas
então derivando uma de cada vez
lembrando que derivada de sen(x) = cos(x)

f'(x)=2*1*x^{1-1} -cos(x)\\\\f'(x)=2*x^0-cos(x)\\\\\boxed{f'(x)=2-cos(x)}

derivando mais uma vez
derivada de cos(x) = -sen(x)
derivada de uma constante é 0

f''(x)= 0 - (-sen(x))\\\\f''(x)=sen(x)

calculando f(x) quando x=π

f''(\pi)=sen(\pi)=0

edu900: é possível colocar explicações no passo a passo?
edu900: trata-se de uma questão multipla escolha... mas não tem zero como opção de resposta.
andresccp: vou editar...rs
Perguntas interessantes