Matemática, perguntado por Savitar, 1 ano atrás

sendo 2x +  \frac{2}{x}  = 3 , determine o valor de  x^{2} +  \frac{1}{ x^{2} } + 1


Lukyo: Sendo 2x + 2/x = 3, determine o valor de x^2 + 1/x^2 + 1.

Soluções para a tarefa

Respondido por Lukyo
0
\large\begin{array}{l} \textsf{Se}\\\\ \mathsf{2x+\dfrac{\,2\,}{x}=3}\\\\\\ \textsf{ent\~ao}\\\\ \mathsf{2\!\left(x+\dfrac{\,1\,}{x}\right)=3}\\\\ \mathsf{x+\dfrac{\,1\,}{x}=\dfrac{\,3\,}{2}} \end{array}

\large\begin{array}{l} \mathsf{\left(x+\dfrac{\,1\,}{x}\right)^{\!\!2}=\mathsf{\left(\dfrac{\,3\,}{2}\right)^{\!\!2}}}\\\\ \mathsf{x^2+2\cdot \diagup\!\!\!\! x\cdot \dfrac{\,1\,}{\diagup\!\!\!\! x}+\left(\dfrac{\,1\,}{x}\right)^{\!\!2}=\dfrac{\,9\,}{4}}\\\\ \mathsf{x^2+2+\dfrac{1}{x^2}=\dfrac{\,9\,}{4}}\\\\ \mathsf{x^2+\dfrac{1}{x^2}+1+1=\dfrac{\,9\,}{4}} \end{array}

\large\begin{array}{l} \mathsf{x^2+\dfrac{1}{x^2}+1=\dfrac{\,9\,}{4}-1}\\\\ \mathsf{x^2+\dfrac{1}{x^2}+1=\dfrac{\,9\,}{4}-\dfrac{\,4\,}{4}}\\\\ \mathsf{x^2+\dfrac{1}{x^2}+1=\dfrac{9-4}{4}}\\\\\\ \therefore~~\boxed{\begin{array}{c}\mathsf{x^2+\dfrac{1}{x^2}+1=\dfrac{5}{4}} \end{array}}\qquad\quad\checkmark \end{array}


Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/7766400


\large\begin{array}{l} \textsf{D\'uvidas? Comente.}\\\\\\ \textsf{Bons estudos! :-)} \end{array}


Tags: expressão algébrica racional fração quadrado valor álgebra

Perguntas interessantes