Sendo O (0;0) a origem e r uma reta que passa por C (0;4) e corta o eixo das abscissas num ponto B. Sabe-se que a reta y=x intersecta perpendicularmente a reta r num ponto A.
Portanto, a área do triangulo OAB é igual a:
a)8
b)2
c)16
d)4
Soluções para a tarefa
Para resolver esta questão, devemos primeiro organizar as informações dadas dentro de um gráfico. (Anexei o gráfico juntamente a resposta).
Tendo organizado estas informações, podemos iniciar os cálculos. Inicialmente devemos encontrar a equação da reta "r" informada, para isso podemos utilizar os pontos A e C para formular uma equação, pois como é sabido, dois pontos são mais que necessários para montar uma reta. Primeiro vamos encontrar o coeficiente angular desta reta através da fórmula abaixo:
Substituindo os dados dos pontos na fórmula:
Outra informação que pode ser extraída é o coeficiente (m) da reta r, já que sabemos que a reta y = x é perpendicular a reta "r". Como sabemos, existe uma propriedade que nos diz que "O coeficiente angular de retas perpendiculares é dado pelo inverso do oposto uma da outra", matematicamente tem-se:
O coeficiente da reta y = x é dado pelo coeficiente que fica afrente da incógnita x, ou seja, neste caso o coeficiente é igual a 1. Substituindo a informação na relação:
Portanto, o coeficiente angular da reta "r" é igual a -1. Substituindo esta informação na equação do coeficiente angular, temos que:
Portanto essa é a equação da reta r. Agora devemos encontrar numericamente os valores dos pontos A e C. Primeiramente vamos encontrar o valor do ponto A, já que é basicamente a interseção entre a reta r: y = 4 - x e a reta y = x. Interseção quer dizer onde elas se encontram, ou seja, onde elas são iguais, por este motivo basta igualar as equações:
Portanto, o valor do ponto é A(2,2).
Por fim, devemos encontrar o valor do ponto B, que é bem básico, pelo motivo de que ele é um ponto que toca apenas o eixo "x", ou seja, o valor de "y" é 0 e também este ponto faz parte da reta "r", portanto, podemos utilizar esta informação de que quando x é um valor qualquer, y é igual a 0:
Concluí-se então B é dado por B(4,0).
Para finalizar a questão, basta utilizar a relação da área através do determinante:
Substituindo os dados na relação:
- Resposta: Letra d)