Matemática, perguntado por xinya295, 8 meses atrás

Sendo log 2 = a, log 3 = b, calcule:

log(6. 4√12)

URGENTE!!!!!!!!!!!!1

Soluções para a tarefa

Respondido por auditsys
0

Resposta:

\textsf{Leia abaixo}

Explicação passo-a-passo:

\mathsf{log(6.4\sqrt{12})}

\mathsf{log((2.3).(2.2).(12^\frac{1}{2}))}

\mathsf{log((2.3).(2.2).(3.2.2)^\frac{1}{2})}

\mathsf{log\:2 + log\:3 + log\:2 + log\:2 + \dfrac{1}{2}(log 3 + log\:2 + log\: 2)}

\mathsf{a + b + a + a + \dfrac{1}{2}(b + a + a)}

\mathsf{3a + b + \dfrac{1}{2}(2a + b)}

\mathsf{\dfrac{6a + 2b + 2a + b}{2}}

\boxed{\boxed{\mathsf{\dfrac{8a + 3b}{2}}}}

Respondido por EinsteindoYahoo
0

Resposta:

log(6. 4√12)

log  6 + log 4 + log √12

log  6 + log 4 +(1/2) *  log 12

log  2+log 3 +2 log 2 +(1/2) *  ( 2*log 2+ log 3)

a+b+2*a+(1/2)*(2*a+b)

=3a+b+a+b/2

=4a+3b/2

Perguntas interessantes