Sendo α e β ângulos do 1°Q, com cos α = 4/5 e cos β = 12/13, calcule:
a) sen (α + β)=
b) cos (α−β)=
c)sen 2β=
d)cos 2α=
Soluções para a tarefa
Salve Monteirão ( o mais brabo ):
Resolva usando as relações trigonométricas:
sen (a + b) = sen a · cos b + sen b · cos a
sen (a – b) = sen a · cos b – sen b · cos a
cos (a + b) = cos a · cos b – sen a · sen b
cos (a – b) = cos a · cos b + sen a · sen b
sen² + cos² = 1
senα² + cosα² = 1
senα² + (4/5)² = 1
senα² + 16/25 = 1
senα² = 1 - 16/25
senα² = 1 - 16/25
senα =
senα = 3/5
senβ² + cosβ² = 1
senβ² + (12/13)² = 1
senβ² + 144/169 = 1
senβ =
senβ = 5/13
a)
sen (α + β) = senα . cosβ + senβ . cosα
sen (α + β) = 3/5 . 12/13 + 5/13 . 4/5
sen (α + β) = 36/65 + 20/65
sen (α + β) = 56/65
b)
cos (α−β) = cosα . cosβ + senα . senβ
cos (α−β) = 4/5 . 12/13 + 3/5 . 5/13
cos (α−β) = 48/65 + 15/65
cos (α−β) = 63/65
c)
sen 2β = 2 . senβ . cosβ
sen 2β = 2 . 5/13 . 12/13
sen 2β = 2 . 60/169
sen 2β = 120/169
d)
cos 2α = cos² a – sen² a
cos 2α = (4/5)² - (3/5)²
cos 2α = 7/25