Matemática, perguntado por cristiangrey152, 1 ano atrás

Sendo dada a equação x²+bx+c=0 e sabendo que 4 e -5 são as raízes dessas equação,então temos que:
A)b=1 e c=-9
B)b=1 e c= -20
C) b=9 e c=20
D)b=20 e c=-1

Soluções para a tarefa

Respondido por Renrel
28

Olá.

 

Temos a equação de 2°grau: x² + bx + c = 0.

 

Sabendo o valor das duas raízes, podemos substituir na equação dada e montar um sistema de equação. Um sistema de equação consiste basicamente em duas ou mais equações que são diferentes, mas que podem relacionar entre si. Vamos aos cálculos.

 

Temos:

x' = 4 e x” = -5.

 

Substituindo x por 4, teremos:

x² + bx + c = 0

(4)² + (4)b + c = 0

16 + 4b + c = 0

 

Isolando o valor de c...

16 + 4b + c = 0

c = - 16 – 4b

 

Substituindo o valor de x por -5, teremos:

x² + bx + c = 0

(-5)² + (-5)b + c = 0

25 - 5b + c = 0

 

Usando o valor de c, obtido acima, podemos substituir. Teremos:

25 - 5b + c = 0

25 - 5b + (-16 – 4b) = 0

25 - 5b - 16 – 4b = 0

9 - 9b = 0

9 = 9b

9/9 = b

1 = b

 

Temos que b vale 1. Sabendo disso, podemos substituir no valor algébrico que conseguimos de c, para obter seu valor. Teremos:

c = - 16 – 4b

c = - 16 – 4(1)

c = - 16 – 4

c = -20


Temos, então, os valores das incógnitas:

b = 1,

c = -20.

 

A resposta correta é alternativa B.

 

Quaisquer dúvidas, deixe nos comentários.

Bons estudos.

Perguntas interessantes