Sendo A= sen π/2 - 2 sen0 . sen π/2
_________________________
cos π/2 . sen π/4 + cos² π
Qual é o valor de A?
Soluções para a tarefa
Respondido por
1
sen π/2 - 2 sen0 . sen π/2 sen π/2 - 0
------------------------------------ = ---------------------------------- =
cos π/2 . sen π/4 + cos² π 1.sen π/4 + cos² π
sen π/2 senπ/2 0,5
------------------------------- = ---------------------------- = --------------------
sen π/4 + (1 - sen²π ) senπ/4 - 0 + 1 \sqrt{2} /2 + 1
0,5 1
= ------------------- = ------------------
( \sqrt{2} + 2 ) / 2 \sqrt{2} + 2
racionalizando
1 ( \sqrt{2} - 2) \sqrt{2} - 2 \sqrt{2} - 2
---------------- .------------------ = -------------------- = - --------------------
\sqrt{2} + 2 (\sqrt{2} - 2) 2 - 4 2
------------------------------------ = ---------------------------------- =
cos π/2 . sen π/4 + cos² π 1.sen π/4 + cos² π
sen π/2 senπ/2 0,5
------------------------------- = ---------------------------- = --------------------
sen π/4 + (1 - sen²π ) senπ/4 - 0 + 1 \sqrt{2} /2 + 1
0,5 1
= ------------------- = ------------------
( \sqrt{2} + 2 ) / 2 \sqrt{2} + 2
racionalizando
1 ( \sqrt{2} - 2) \sqrt{2} - 2 \sqrt{2} - 2
---------------- .------------------ = -------------------- = - --------------------
\sqrt{2} + 2 (\sqrt{2} - 2) 2 - 4 2
Perguntas interessantes