Matemática, perguntado por g4brielf3lipe, 1 ano atrás

Sendo a função f:R-- R definida por f(x)= 2sen x + sen 2x + cos 3x, calcule:
A)
f ( \frac{ \pi }{2} )
B) f ( \pi )
C) \frac{f(0) + f(2x)}{f( \frac{3 \pi }{2}) }

Soluções para a tarefa

Respondido por MATHSPHIS
26
f(x)= 2sen x + sen 2x + cos 3x

a)
f(\frac{\pi}{2})= 2sen (\frac{\pi}{2})} + sen 2.(\frac{\pi}{2}) + cos 3.(\frac{\pi}{2})=  \\
\\
f(\frac{\pi}{2})= 2sen (\frac{\pi}{2})} + sen \  \pi + cos (\frac{3\pi}{2})= \\
\\
f(\frac{\pi}{2})=2.1+0+0=  \\
\boxed{f(\frac{\pi}{2})=2}

b)
f(\pi)= 2sen \pi + sen 2 \pi + cos 3 \pi =  \\
\\
f(\pi)=2.0+0+(-1)=  \\
\\
\boxed{f(\pi)=-1}

c)

f(0)= 2sen 0 + sen 2.0 + cos 3.0 \\
\\
f(0)=2.0+0+1
f(0)=1
\\
\\
f(2\pi)= 2sen 2\pi + sen 2.2\pi + cos 3.2\pi  \\
\\
f(2\pi)=2.0+0+1  \\
\\
f(2\pi)=1  \\
\\
f(\frac{3\pi}{2})= 2sen \frac{3\pi}{2} + sen 2.\frac{3\pi}{2} + cos 3.\frac{3\pi}{2}= \\
\\
f(\frac{3\pi}{2})= 2sen \frac{3\pi}{2} + sen 3\pi + cos \frac{9\pi}{2}= \\
\\
f(\frac{3\pi}{2})=2.(-1)+0+0=-2

Logo

\boxed{\frac{f(0)+f(2\pi)}{f(\frac{3\pi}{2})}=\frac{1+1}{(-2)}=-1}
Perguntas interessantes