Sendo A(-2, 1, 3) B(6, -7, 1) extremidades de um mesmo segmento
a-) os pontos C, D e E, nesta ordem que dividem o seguimento AB em quatro partes de mesmo seguimento
b-) os pontos F e G, nesta ordem, que dividem o seguimento AB em três partes de mesmo comprimento
Soluções para a tarefa
Respondido por
30
vetor AB = B-A
(-6i,-7j,1k)-(-2i,1j,3k)
vetor AB = (8i,-8j,-2k)
vetor AC= 1/4*AB = (2i,-2j,-1/2k)
vetor AD= 1/2*AB = (4i,-4j,-1k)
vetor AE= 3/2*AB = (6i,-6j,-3/2k)
vetor AF= 1/3*AB = (8/3i,-8/3j,-2/3k)
vetor AG= 2/3*AB = (16/3i,-16/3j,-4/3k)
Ponto C = A+vetor AC = (-2i,1j,3k) + (2i,-2j,-1/2k) = (0i,-1j,2.5k)
Ponto D = A+vetor AC = (-2i,1j,3k) + (4i,-4j,-1k) = (2i,-3j,2k)
Ponto E = A+vetor AC = (-2i,1j,3k) + (6i,-6j,-3/2k) = (4i,-5j,1/2k)
Ponto F = A+vetor AC = (-2i,1j,3k) + (8/3i,-8/3j,-2/3k) = (2/3i,-5/3j,7/3k)
Ponto G = A+vetor AC = (-2i,1j,3k) + (16/3i,-16/3j,-4/3k) = (10/3i,-13/3j,5/3k)
(-6i,-7j,1k)-(-2i,1j,3k)
vetor AB = (8i,-8j,-2k)
vetor AC= 1/4*AB = (2i,-2j,-1/2k)
vetor AD= 1/2*AB = (4i,-4j,-1k)
vetor AE= 3/2*AB = (6i,-6j,-3/2k)
vetor AF= 1/3*AB = (8/3i,-8/3j,-2/3k)
vetor AG= 2/3*AB = (16/3i,-16/3j,-4/3k)
Ponto C = A+vetor AC = (-2i,1j,3k) + (2i,-2j,-1/2k) = (0i,-1j,2.5k)
Ponto D = A+vetor AC = (-2i,1j,3k) + (4i,-4j,-1k) = (2i,-3j,2k)
Ponto E = A+vetor AC = (-2i,1j,3k) + (6i,-6j,-3/2k) = (4i,-5j,1/2k)
Ponto F = A+vetor AC = (-2i,1j,3k) + (8/3i,-8/3j,-2/3k) = (2/3i,-5/3j,7/3k)
Ponto G = A+vetor AC = (-2i,1j,3k) + (16/3i,-16/3j,-4/3k) = (10/3i,-13/3j,5/3k)
Perguntas interessantes
Geografia,
10 meses atrás
Inglês,
10 meses atrás
Geografia,
10 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás