sen^(x) - sen(x) + 1/4 = 0
Soluções para a tarefa
Resposta:
Sendo cos(x) =1/4, quanto vale sen(x) para x no intervalo 0 < x <pi/2?
senx= V1- (cosx)^2
senx= V1- (1/4)^2
senx = V1-1/16
senx = V16-1 ==> senx = V15
V16 4
2- Se sen(x) = -12/13 com o x n terceiro quadrannte, determine cos(x):
cosx= V1- (senx)^2
cosx= V1- (12/13)^2
cosx = V1-144/169
cosx = V169-144 ==> cosx = V25
V169 V169
cosx = - 5
13
espero ter ajudado segue pra me ajudar tmb