Sem fazer o gráfico, verifique se a parábola referente a cada função a seguir cruza o eixo 0x em um único ponto, em dois pontos ou se não cruza o eixo x.
a) y= - 2x² + 12x - 18
b) y= x² - 4x - 21
c) y= - x² + 25
d) y= 3x² - x + 6
Soluções para a tarefa
Respondido por
25
OI E ESSA OLHA
Equação Completa do segundo grau
Uma equação do segundo grau é completa, se todos os coeficientes a, b e c são diferentes de zero.
Exemplos:
1) 2 x² + 7x + 5 = 0
2) 3 x² + x + 2 = 0
o coeficiente a é diferente de zero.
Exemplos:
1) 4 x² + 6x = 0
2) 3 x² + 9 = 0
3) 2 x² = 0
Resolução de equações completas do 2° grau
Como vimos, uma equação do tipo: ax²+bx+c=0, é uma equação completa do segundo grau e para resolvê-la basta usar a fórmula quadrática (atribuída a Bhaskara), que pode ser escrita na forma:
onde Δ=b²-4ac é o discriminante da equação.Para esse discriminante Δ, há três possíveis situações:
1) Δ <> 0, há duas soluções reais e diferentes
Mostraremos agora como usar a fórmula de Bhaskara para resolver a equação:
x² - 5 x + 6 = 0
1) Identificar os coeficientes: a=1, b= -5, c=6
2) Escrever o discriminante Δ = b²-4ac.
3) Calcular Δ=(-5)²-4×1×6=25-24=1
4) Escrever a fórmula de Bhaskara:
Equação Completa do segundo grau
Uma equação do segundo grau é completa, se todos os coeficientes a, b e c são diferentes de zero.
Exemplos:
1) 2 x² + 7x + 5 = 0
2) 3 x² + x + 2 = 0
o coeficiente a é diferente de zero.
Exemplos:
1) 4 x² + 6x = 0
2) 3 x² + 9 = 0
3) 2 x² = 0
Resolução de equações completas do 2° grau
Como vimos, uma equação do tipo: ax²+bx+c=0, é uma equação completa do segundo grau e para resolvê-la basta usar a fórmula quadrática (atribuída a Bhaskara), que pode ser escrita na forma:
onde Δ=b²-4ac é o discriminante da equação.Para esse discriminante Δ, há três possíveis situações:
1) Δ <> 0, há duas soluções reais e diferentes
Mostraremos agora como usar a fórmula de Bhaskara para resolver a equação:
x² - 5 x + 6 = 0
1) Identificar os coeficientes: a=1, b= -5, c=6
2) Escrever o discriminante Δ = b²-4ac.
3) Calcular Δ=(-5)²-4×1×6=25-24=1
4) Escrever a fórmula de Bhaskara:
Perguntas interessantes