selecione a forma simplificada do polinômio P(x)=(x+1)(x-2)+(x-2)(x-1)+4(x+1) A) 2x²+4 B) x²+1 C) x²+x+1 D) 2x²-4x+4
Soluções para a tarefa
Resposta:
Fator comum em evidência
Nesse modelo de fatoração temos que determinar o elemento comum aos termos que formam o polinômio. Observe:
No polinômio x² + 2x, temos que a variável x é comum aos dois termos. Ela será o termo em evidência, a qual dividirá todos os termos do polinômio original.
x² + 2x → x * (x + 2)
x² : x = x
2x : x = 2
Veja mais exemplos de fatoração por evidência:
4x³ – 2x² → 2x² * (2x – 1)
4x³ : 2x² = 2x
2x : 2x = 1
16x² + 8 → 8 * (2x² + 1)
16x² : 8 = 2x²
8 : 8 = 1
Fatoração por Agrupamento
Na fatoração por agrupamento, utilizamos inicialmente a fatoração por evidência e logo em seguida agrupamos os termos sob certas condições também de evidenciação. Observe:
2yx – x – 6y + 3, aplicar evidência entre 2yx e –x e entre –6y e 3.
2yx – x → x * (2y – 1)
–6y + 3 → –3 * (2y – 1)
2yx – x – 6y + 3 → x * (2y – 1) – 3 * (2y – 1) → (x – 3) * (2y – 1)
Observe mais exemplos:
bx – 2b + x – 2 → bx + x – 2b – 2 → x * (b + 1) – 2 * (b + 1) → (x – 2) * (b + 1)
10x² + 15xy + 4x + 6y → 10x² + 4x + 15xy + 6y → 2x * (5x + 2) + 3y * (5x + 2) → (2x + 3y) * ( 5x + 2)