Sejam: y = [(1 + logp m). logpm c] - logp c e x= logp cm - log√(m&p)C, então x- y, vale:
Soluções para a tarefa
Respondido por
3
y = [(1 + log[p] M) . log[pm] C] - log[p] C
y = [(1 + log[p] M) .( log[p]C/log[p] PM)] - log[p] C
y = [(1 + log[p] M) .( log[p]C/log[p] P + log[p]M)] - log[p] C
y = [(1 + log[p] M) .( log[p]C/1 + log[p]M)] - log[p] C
y = [(1 + log[p] M) .( log[p]C)/(1 + log[p]M)] - log[p] C
y = log[p] C - log[p] C
y = 0
-----------------------------
x = log[p] C^(m) - log[m√p] C
x = log[p] C^(m) - (log[p] C/log[p] m√P)
x = log[p] C^(m) - [log[p] C/log[p] P^(1/m)]
x = log[p] C^(m) - [log[p] C/(1/m).log[p] P]
x = log[p] C^(m) - [log[p] C/(1/m)]
x = log[p] C^(m) - [(log[p] C).(m/1)]
x = log[p] C^(m) - m.log[p] C
x = log[p] C^(m) - log[p] C^(m)
x = 0
-----------------------------------
x - y = 0 - 0
x - y = 0
y = [(1 + log[p] M) .( log[p]C/log[p] PM)] - log[p] C
y = [(1 + log[p] M) .( log[p]C/log[p] P + log[p]M)] - log[p] C
y = [(1 + log[p] M) .( log[p]C/1 + log[p]M)] - log[p] C
y = [(1 + log[p] M) .( log[p]C)/(1 + log[p]M)] - log[p] C
y = log[p] C - log[p] C
y = 0
-----------------------------
x = log[p] C^(m) - log[m√p] C
x = log[p] C^(m) - (log[p] C/log[p] m√P)
x = log[p] C^(m) - [log[p] C/log[p] P^(1/m)]
x = log[p] C^(m) - [log[p] C/(1/m).log[p] P]
x = log[p] C^(m) - [log[p] C/(1/m)]
x = log[p] C^(m) - [(log[p] C).(m/1)]
x = log[p] C^(m) - m.log[p] C
x = log[p] C^(m) - log[p] C^(m)
x = 0
-----------------------------------
x - y = 0 - 0
x - y = 0
Perguntas interessantes
Biologia,
9 meses atrás
Matemática,
9 meses atrás
Espanhol,
9 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás